摘要:
Getter structure comprising a substrate and at least one getter material-based layer mechanically connected to the substrate by means of at least one support, in which the surface of the support in contact with the substrate is smaller than the surface of a first face of the getter material layer, in which said first face is in contact with the support, and a second face of the getter material layer, opposite said first face is at least partially exposed.
摘要:
The inventive method for closing a vent (9) formed in a microstructure (3) wall (10) under a controlled atmosphere is carried out by an ultrasonic bonding machine comprising a welding electrode (14), a metal wire (13) crossing the electrode (14) and a working table (15). A ball (12) is formed by melting on the end part of the metal wire (13) and is deposited on the end of the vent (9) and a holding plug (11) and is subsequently exposed to compression forces (F) and ultrasonic vibration (Fus) by the electrode (14) in a controlled atmosphere chamber (17).
摘要:
A method of encapsulating a microelectronic device arranged on a substrate, comprising at least the following steps: a) formation of a portion of sacrificial material covering at least one part of the microelectronic device, the volume of which occupies a space intended to form at least one part of a cavity in which the device is intended to be encapsulated; b) deposition of a layer based on at least one getter material, covering at least one part of the portion of sacrificial material; c) formation of at least one orifice through at least the layer of getter material, forming an access to the portion of sacrificial material; d) elimination of the portion of sacrificial material via the orifice, forming the cavity in which the microelectronic device is encapsulated; and e) sealing of the cavity.
摘要:
A method of encapsulating a microelectronic device arranged on a substrate, comprising at least the following steps: a) formation of a portion of sacrificial material covering at least one part of the microelectronic device, the volume of which occupies a space intended to form at least one part of a cavity in which the device is intended to be encapsulated; b) deposition of a layer based on at least one getter material, covering at least one part of the portion of sacrificial material; c) formation of at least one orifice through at least the layer of getter material, forming an access to the portion of sacrificial material; d) elimination of the portion of sacrificial material via the orifice, forming the cavity in which the microelectronic device is encapsulated; and e) sealing of the cavity.
摘要:
An electronic component including at least one chip and/or one support, the chip configured to be transferred onto the support and linked, at a level of at least one connection site of the chip, formed by at least one portion of a layer of the chip, to at least one connection site of the support formed by at least one portion of a layer of the support, by at least one ball, the chip and/or the support including a mechanism for mechanical decoupling of the connection site of the chip and/or of the support with respect to the chip and/or to the support, which mechanism includes at least one cavity made in the layer of the chip and/or of the support, under the connection site of the chip and/or of the support, and at least one trench, made in the layer of the chip and/or of the support, communicating with the cavity.
摘要:
A method for producing a micromechanical and/or nanomechanical device comprising the steps of:partial etching of at least one sacrificial layer arranged between a first layer and a substrate, forming at least one cavity in which is arranged at least one portion of the sacrificial layer in contact with the first layer and/or the substrate,chemical transformation of at least one wall of the first layer and/or the substrate in the cavity, delimiting at least one stop in the first layer and/or the substrate at the level of the portion of the sacrificial layer,elimination of said portion of the sacrificial layer and the chemically transformed wall of the first layer and/or the substrate.
摘要:
An electronic component including at least one chip and/or one support, the chip configured to be transferred onto the support and linked, at a level of at least one connection site of the chip, formed by at least one portion of a layer of the chip, to at least one connection site of the support formed by at least one portion of a layer of the support, by at least one ball, the chip and/or the support including a mechanism for mechanical decoupling of the connection site of the chip and/or of the support with respect to the chip and/or to the support, which mechanism includes at least one cavity made in the layer of the chip and/or of the support, under the connection site of the chip and/or of the support, and at least one trench, made in the layer of the chip and/or of the support, communicating with the cavity.
摘要:
A process for formation of cavities of a micro-optic device, comprising: a) formation, on the surface plane of a support, of an alignment layer of liquid crystals; and b) formation of walls of said cavities, the base of said cavities being formed by said alignment layer.
摘要:
Getter structure comprising a substrate and at least one getter material-based layer mechanically connected to the substrate by means of at least one support, in which the surface of the support in contact with the substrate is smaller than the surface of a first face of the getter material layer, in which said first face is in contact with the support, and a second face of the getter material layer, opposite said first face is at least partially exposed.
摘要:
The invention concerns a sealing zone between two microstructure substrates. Said sealing zone comprises at least the following parts: on a first wafer level (20), a lower edging (22A) made of an adhesive material capable of causing the first substrate (20) to adhere to a sealing material, said sealing material being adapted to spontaneously diffuse jointly with the material of the second wafer level (30); on said lower edging (22A), a layer of said sealing material; and on said layer of sealing material, a protuberance (36) formed on said second wafer level (30) containing a certain amount of sealing material. The invention is applicable to microstructures comprising vacuum-operated components.