摘要:
A semiconductor device comprising a first transistor device (130) on or in a semiconductor substrate (115) and a second transistor device (132) on or in the substrate. The device further comprises an insulating trench (200) located between the first transistor device and the second transistor device. At least one upper corner (610) of the insulating trench is a rounded corner in a lateral plane (620) of the substrate.
摘要:
A semiconductor device includes an elongated, blade-shaped semiconductor element isolated from a surrounding region of a semiconductor substrate by buried and side oxide layers. A polysilicon post disposed at one end of the element has a bottom portion extending through the buried oxide to contact the substrate, providing for electrical and thermal coupling between the element and the substrate and for gettering impurities during processing. A device fabrication process employs a selective silicon-on-insulator (SOI) technique including forming trenches in the substrate; passivating the upper portion of the element; and performing a long oxidation to create the buried oxide layer. A second oxidation is used to create an insulating oxide layer on the sidewalls of the semiconductor element, and polysilicon material is used to fill the trenches and to create the post. The process can be used with conventional bulk silicon wafers and processes, and the blade devices can be integrated with conventional planar devices formed on other areas of the wafer.
摘要:
A semiconductor device (10) is formed in a semiconductor substrate (11) and an epitaxial layer (14). The semiconductor device includes a p-type body region (16), a source region (17), a channel region (19), and a drain region (34) formed in the epitaxial layer (14). A doped region (13) is formed in the semiconductor substrate (11) to reduce the drift resistance of the semiconductor device (10). The drain region (34) is formed from a plurality of doped regions (30-33) that can be formed with high energy implants.
摘要:
A field effect transistor (30) has an array of transistors (31) made up of bonding pads (45-47) and sub-arrays of transistors (41-43). The bonding pads (45-47) are distributed between the sub-arrays of transistors (41-43) to reduce the maximum temperature that any portion of the FET (30) is exposed to while the FET (30) is in a conducting state. A similar effect can be appreciated by adjusting the threshold voltage or pinch-off resistance of the transistors in a portion (101) of an array of transistors (95).
摘要:
The present invention is directed to a thin film transistor having a linear doping profile between the gate and drain regions. This is constructed in a particular manner in order to achieve a thin film transistor having a significantly high breakdown voltage of the order of 700 to 900 volts, much greater than that achieved in the prior art.
摘要:
A very thin silicon film SOI device can be made utilizing a bond and etch-back process. In the presently claimed invention, boron dopant is introduced into a surface of a silicon device wafer and the doped surface is bonded onto another silicon wafer at an oxide surface. The device wafer is thinned by etching down to the doped region and, by subsequent annealing in hydrogen, boron is diffused out of the silicon surface layer to produce very thin SOI films.
摘要:
A field effect transistor (30) has an array of transistors (31) made up of bonding pads (45-47) and sub-arrays of transistors (41-43). The bonding pads (45-47) are distributed between the sub-arrays of transistors (41-43) to reduce the maximum temperature that any portion of the FET (30) is exposed to while the FET (30) is in a conducting state. A similar effect can be appreciated by adjusting the threshold voltage or pinch-off resistance of the transistors in a portion (101) of an array of transistors (95).
摘要:
A Semiconductor-On-Insulator (SOI) device includes a semiconductor substrate, a buried insulating layer on the substrate, and a lateral MOSFET on the buried insulating layer. The MOSFET includes a semiconductor surface layer on the buried insulating layer and has a source region of a first conductivity type, a channel region of a second conductivity type opposite to that of the first, an insulated gate electrode over the channel region and insulated therefrom, a lateral drift region of the second conductivity type, and a drain region of the first conductivity type laterally spaced apart from the channel region by the drift region. A semiconductor linkup region of the first conductivity type is provided between the channel region and the drift region and extends substantially through the semiconductor surface layer, and the source region of the device is electrically coupled to the drift region. This device configuration is particularly useful in providing a high-voltage p-channel MOS transistor using thin SOI high-voltage technology normally associated with fabricating n-channel devices.
摘要:
The present invention is directed to a method and thin film transistor having a linear doping profile between the gate and drain regions. This is constructed in a particular manner in order to achieve a thin film transistor having a significantly high breakdown voltage of the order of 700 to 900 volts, much greater than that achieved in the prior art.
摘要:
A Junction Field Effect Transistor (JFET) can be fabricated with a well region that include a channel region having an average dopant concentration substantially less the average doping concentration of the remaining portions of the well region. The lower average doping concentration of channel region compared to the remaining portions of the well region reduces the pinch-off voltage of the JFET.