摘要:
Techniques for error concealment in multimedia data processing. In an embodiment, error distribution information corresponding to a first section in an access unit is obtained. In another embodiment, a plurality of error recovery schemes may be applied to the first section of the multimedia data based on the error distribution information.
摘要:
Techniques for video encoding and decoding channel switch frames (CSF) to enable acquisition and re/synchronization of the video stream while preserving compression efficiency is provided. Systems and methods to process multimedia data enabling channel switching are presented. The systems generate a CSF with one or more network adaptation layer (NAL) units as a random access point (RAP) frame. Back-to-back frames are transmitted which include the CSF and a non-RAP frame, each having the same frame ID number.
摘要:
A method and apparatus for multi-layer integration for use in error recovery is disclosed. An error is detected in a multimedia data based on a first layer protocol and the detected error in the multimedia data is concealed based on a second layer protocol. In one aspect, the error in a multimedia data is detected based on a communication layer protocol and controlled based on a transport layer protocol. An error distribution of the controlled error is then determined based on a sync layer protocol and the detected error in the multimedia data is concealed based on an application layer protocol. In another aspect, a method and apparatus for multimedia data processing comprises error recovery as well as scalability. Finally, a method and apparatus as disclosed allows processing of multimedia stream by receiving multiple streams of encoded multimedia data, performing error recovery on an erroneous portion of a stream, and reconstructing the multimedia data from the multiple streams.
摘要:
This disclosure relates to techniques for performing display mode based video encoding to reduce power consumption in a source device of a Wireless Display (WD) system. More specifically, the techniques enable the source device to select an encoding process based on whether the video data to be encoded is in a static display mode or a dynamic display mode. For example, when the video data is in the static display mode, the source device selects a static encoding process that reduces an amount of video data processing and compression, which in turn reduces power consumption at the source device. When the video data is in the dynamic mode, the source device may select a conventional dynamic encoding process. The source device encodes the video data according to the selected encoding process, and transmits the encoded video data to one or more sink devices in the WD system for display.
摘要:
Techniques for video encoding and decoding channel switch frames (CSF) to enable acquisition and re/synchronization of the video stream while preserving compression efficiency is provided. Systems and methods to process multimedia data enabling channel switching are presented. The systems generate a CSF with one or more network adaptation layer (NAL) units as a random access point (RAP) frame. Back-to-back frames are transmitted which include the CSF and a non-RAP frame, each having the same frame ID number.
摘要:
An Encoder Assisted Frame Rate Up Conversion (EA-FRUC) system that utilizes various motion models, such as affine models, in addition to video coding and pre-processing operations at the video encoder to exploit the FRUC processing that will occur in the decoder in order to improve the modeling of moving objects, compression efficiency and reconstructed video quality. Furthermore, objects are identified in a way that reduces the amount of information necessary for encoding to render the objects on the decoder device.
摘要:
A method of video coding that includes encoding resynchronization point information, where the resynchronization point information includes information identifying a location of a resynchronization point within a section of a video bitstream and information for decoding the bitstream following the resynchronization point. Also, a method for decoding digital video that includes receiving an encoded bitstream including resynchronization point information, where the resynchronization point information includes information identifying a location of a resynchronization point and information for decoding the bitstream following the resynchronization point, decoding the received bitstream, and locating the resynchronization point in the bitstream based on the resynchronization point information.
摘要:
This disclosure relates to techniques for performing display mode based video encoding to reduce power consumption in a source device of a Wireless Display (WD) system. More specifically, the techniques enable the source device to select an encoding process based on whether the video data to be encoded is in a static display mode or a dynamic display mode. For example, when the video data is in the static display mode, the source device selects a static encoding process that reduces an amount of video data processing and compression, which in turn reduces power consumption at the source device. When the video data is in the dynamic mode, the source device may select a conventional dynamic encoding process. The source device encodes the video data according to the selected encoding process, and transmits the encoded video data to one or more sink devices in the WD system for display.