Abstract:
A functional element-mounted module can be decreased in size and requires no costly and special members for a light transition member. A substrate is used, on which an optical functional element having an optical function part and bonding pads therearound is mounted by wire bonding, with an upper face of the element upward. A bank to dam a liquid sealing resin is provided around the optical functional element on the substrate, and the liquid sealing resin is dropped and filled between the optical functional element and the bank such that the bonding pads and partial gold wires for the wire bonding are exposed. A package-component member having a hole corresponding to the optical functional element is abutted to the bank such that the hole is opposed to the function part of the functional element. Thereby, the package-component member is contacted to the liquid sealing resin. The package-component member is fixed to the substrate by curing the liquid sealing resin, and the bank is cut away.
Abstract:
A protective circuit capable of coping with broad voltage variations of a battery unit to interrupt its charging/discharging current path as damages to the heating unit are prevented from occurrence is disclosed. The protective circuit includes fuses, connected to a charging/discharging current path in series between a battery unit and a charging/discharging control circuit, and a heating unit composed by a series connection of resistors. One of two ends of the resistor which is not connected to the peer resistor is connected to a current path of the fuses. The ends of the resistors not connected to the fuses, are provided with a plurality of terminals selected for connection to a current control element that controls the current flowing through the heating unit, as a range of voltage variations of the battery unit is taken into account.
Abstract:
A protection element and a secondary battery device employing the protection element are provided for stably retaining a flux on a soluble conductor at a predetermined position, so as to enable appropriate blowout of the soluble conductor in the event of an abnormality. The protection element has a soluble conductor which is disposed on an insulation baseboard, and which is connected to a power supply path of a device targeted to be protected, and which causes a blowout when a predetermined abnormal electric power, amount is supplied. A flux is coated on a surface of the soluble conductor, and an insulation cover member is mounted on the baseboard and covers the soluble conductor. The protection element also includes a stepped portion for retaining the flux at a predetermined position in contact with the flux, and the stepped portion is formed opposite to the soluble conductor on an interior face of the insulation cover member.
Abstract:
A die for forming a molding includes a molding die including an upper die and a lower die cooperating with the upper die to support a glass plate and forming a resin molding, the lower die having a concave surface including a contact surface that comes into contact with a metal molding, and a plurality of aperture portions formed on the contact surface, a non-magnetic cylindrical intermediate member contacted with an inner surface of each of the aperture portions, a molding-fixing member including a crown portion that retains the metal molding, and a flange portion disposed on a lower side of the crown portion, and a magnetic force generation device. The flange portion of the molding-fixing member has an outer diameter larger than an inner diameter of each of the aperture portions.
Abstract:
A protection element, connected onto an electric current path of an electric circuit, is provided with an insulating substrate, a heating resistor formed on one surface of the insulating substrate with a first insulating layer interposed therebetween, a low-melting-point metal body disposed above the heating resistor with a second insulating layer interposed therebetween and that constitutes part of the electric current path, and connection portions connected to both ends of the low-melting-point metal body and that electrically connect the electric current path and the low-melting-point metal body. The connection portions are formed on the surface of the insulating substrate with a first glass layer interposed therebetween.
Abstract:
A protection element and a secondary battery device employing the protection element are provided for stably retaining a flux on a soluble conductor at a predetermined position, so as to enable appropriate blowout of the soluble conductor in the event of an abnormality. The protection element has a soluble conductor which is disposed on an insulation baseboard, and which is connected to a power supply path of a device targeted to be protected, and which causes a blowout when a predetermined abnormal electric power amount is supplied. A flux is coated on a surface of the soluble conductor, and an insulation cover member is mounted on the baseboard and covers the soluble conductor. The protection element also includes a stepped portion for retaining the flux at a predetermined position in contact with the flux, and the stepped portion is formed opposite to the soluble conductor on an interior face of the insulation cover member.
Abstract:
A die for forming a molding includes a molding die including an upper die and a lower die cooperating with the upper die to support a glass plate and forming a resin molding, the lower die having a concave surface including a contact surface that comes into contact with a metal molding, and a plurality of aperture portions formed on the contact surface, a non-magnetic cylindrical intermediate member contacted with an inner surface of each of the aperture portions, a molding-fixing member including a crown portion that retains the metal molding, and a flange portion disposed on a lower side of the crown portion, and a magnetic force generation device. The flange portion of the molding-fixing member has an outer diameter larger than an inner diameter of each of the aperture portions.
Abstract:
An optical functional device-mounted module and a producing process thereof. A bank to dam a liquid sealing resin is provided on a substrate around an optical functional device, the substrate being formed with a predetermined wiring pattern and having the optical functional device mounted thereon. The liquid sealing resin is filled between the functional device and the bank by dropping the liquid sealing resin therebetween. A package component member having a light transmission hole corresponding to an optical function part of the optical functional device is brought into contact with the bank such that the light transmission hole is opposed to the function part of the optical functional device, thereby causing the package component member to contact with the liquid sealing resin. The package component member is fixed onto the substrate by curing the liquid sealing resin and the bank is finally cut off and removed.
Abstract:
Opposed to a substrate (2) having a functional element (1) with a functional portion (1a) mounted thereon, there is disposed a resin sealing plate (3) provided with an opening (3a) corresponding to the functional portion (1a) of the functional element (1) with a given spacing therebetween. Impregnation and filling of a sealing resin (5) in the spacing between the substrate (2) and the resin sealing plate (3) are carried out by the use of the capillary phenomenon. Thus, resin sealing of the functional element (1) can be realized without damaging to the function of the functional portion (1a).
Abstract:
The present disclosure provides an optical functional device-mounted module which needs no expensive or special members, can be reduced in size, and provide a producing process thereof. A bank to dam a liquid sealing resin is provided on a substrate around an optical functional device, the substrate being formed with a predetermined wiring pattern and having the optical functional device mounted thereon. The liquid sealing resin is filled between the functional device and the bank by dropping the liquid sealing resin therebetween. A package component member having a light transmission hole corresponding to an optical function part of the optical functional device is brought into contact with the bank such that the light transmission hole is opposed to the function part of the optical functional device, thereby causing the package component member to contact with the liquid sealing resin. The package component member is fixed onto the substrate by curing the liquid sealing resin and the bank is finally cut off and removed.