Abstract:
The present invention provide a novel polyimide which is soluble in organic solvents and excels in heat resistance, and to a process for producing the polyimide. The polyimide of the present invention comprises a repeating unit represented by the formula (1) and having a number average molecular weight of from 4,000 to 200,000. ##STR1## wherein X is --SO.sub.2 -- or --C(.dbd.O)--OCH.sub.2 CH.sub.2 O--C(.dbd.O)--, and R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are independently an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
Abstract:
This invention is to provide a liquid adhesive of the present invention can be adhered and cured at a relatively low temperature and have sufficient heat resistance and reliability, etc., and an adhesive tape using the same.The liquid adhesive of this invention is obtainable by dissolving (a) a piperazinylethylaminocarbonyl-containing butadiene-acrylonitrile copolymer having a weight average molecular weight of 10,000-200,000, an acrylonitrile content of 5-50% by weight, and an amino equivalent of 500-10,000, represented by the following formula (I): ##STR1## wherein, k, m, and n are molar ratios and taking n as 1, k is a number of 3-175, and m is a number of 0.3 to 93; and (b) a compound having at least two maleimide groups, the ratio of component (b) based on 100 parts by weight of component (a) being in the range of 10 to 900 parts by weight. This is applied to one or both surfaces of a heat resistant film or one surface of a release film to form an adhesive layer, thereby obtaining an adhesive tape for electronic parts.
Abstract:
This invention provide an adhesive tape for electronic parts having sufficient thermal resistance and reliability. The adhesive tape comprises a metal substrate, an adhesive layer A and an adhesive layer B laminated in order, wherein said adhesive layers A and B are resin layers composed of 100-40% by mol of at least a polyimide comprising the repeating unit represented by the formula (1) and 0-60% by mol of the repeating unit represented by the formula (2), said two adhesive layers having each a different glass transition temperature: wherein X is —SO2— and/or —C(=O)—OCH2CH2O—C(=O)—, Ar is a divalent group containing aromatic rings, and R is an alkylene group having 1 to 10 carbon atoms or —CH2OC6H4—, and n means an integer of 1 to 20.
Abstract:
This invention provides an adhesive tape and a liquid adhesive for electronic parts having sufficient thermal resistance and reliability. The adhesive tape of the invention comprises an adhesive layer composed of at least a polyimide selected from (I) a polyimide comprising the repeating unit represented by the following formula (1), (II) a polyimide comprising the repeating unit represented by the following formula (2), and (III) a polyimide comprising the repeating units represented by the following formulas (1) and (2) in a suitable proportion, provided on at least one surface of a heat resistance film or on a surface of a release film: ##STR1## wherein Ar is a divalent group having aromatic rings, Ra is a divalent group having 2 to 6 benzene rings; Rb is an alkylene group having 2 to 20 carbon atoms, a specific ether group or a specific dimethylsiloxane group: X.sup.1 is NH, NR (R is a C.sub.1 -C.sub.4 alkyl group or alkoxy group) or S; and X.sup.2 is NH, NR (R is a C.sub.1 -C.sub.4 alkyl group or alkoxy group), ##STR2## or S.
Abstract:
Novel polyimides which are soluble in various organic solvents and excellent in thermal resistance, processability are disclosed. The polyimides comprise repeating units represented by the following formula (1) and/or (2) and having a number average molecular weight of 4,000-200,000. ##STR1## wherein Ar is a divalent group represented by the following formula (2) or (3): ##STR2## wherein Y is --O--, --CO--, --S--, --SO.sub.2 -- or --C(CH.sub.3).sub.2 --, ##STR3## wherein R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are each a C.sub.1-4 alkyl group or a C.sub.1-4 alkoxy group, Ra is a divalent group having 2-6 benzene rings, X.sup.1 represents NH, NR (wherein R is a C.sub.1-4 alkyl group or a C.sub.1-4 alkoxy group) or S, Rb is C.sub.2-20 alkylene group, ether group or dimethylsiloxane group, and X.sub.2 represents NH, NR (wherein R is a C.sub.1-4 alkyl group or a C.sub.1-4 alkoxy group), ##STR4##
Abstract:
Adhesive tapes which can be adhered and cured at a relatively low temperature, keeps enough electric insulation in case of adhering to the leadframe of semiconductor devices. The adhesive tape comprises a releasing film and an adhesive layer provided on a surface of said releasing film, said adhesive layer being semi-cured into a B-stage and composed of:(a) a piperazinylethylaminocarbonyl-containing butadiene-acrylonitrile copolymer having a weight average molecular weight of 10,000-200,000, an acrylonitrile content of 5-50% by weight and an amino equivalent of 500-10,000, represented by the formula (I): ##STR1## wherein, k, m, and n are molar ratios and taking n as 1, k is a number of 3-175, and m is a number of 0.3 to 93; and(b) a compound having at least two maleimide groups, the ratio of component (b) based on 100 parts by weight of component (a) being in a range of 10 to 900 parts by weight, and said adhesive layer being composed of at least two semi-cured layers having each a different status of semi-cure.
Abstract:
This invention is to provide a liquid adhesive can be adhered and cured at a relatively low temperature and have sufficient heat resistance and reliability, etc., and an adhesive tape using the same. The liquid adhesive of this invention is obtainable by dissolving(a) a butadiene-acrylonitrile copolymer having piperazinylethylaminocarbonyl groups at both terminals and having a weight average molecular weight of 1,000-50,000, and an acrylonitrile content of 5-50% by weight, represented by the following formula (I): ##STR1## wherein, m=50-95, and n=5-50; and (b) a compound having at least two maleimide groups, the ratio of component (b) based on 100 parts by weight of component (a) being in the range of 10 to 900 parts by weight. This is applied to one or both surfaces of a heat resistant film or one surface of a release film to form an adhesive layer, thereby obtaining an adhesive tape for electronic parts.
Abstract:
The piperazinylethylaminocarbonyl-containing butadiene-acrylonitrile copolymer of this invention is a novel substance useful as an adhesive component for adhesive tapes, which tapes are used in the interior of a resin-sealed type semiconductor device. The copolymer has a weight average molecular weight of 10,000-200,000, and is represented by the following general formula (I) and obtained by condensing a carboxyl-containing butadiene-acrylonitrile copolymer having a weight average molecular weight of 10,000-200,000 with N-aminoethylpiperazine in the presence of a phosphite and a pyridine derivative to undergo the amidation. ##STR1## wherein k, m, and n indicate molar proportions, where n is taken as 1, k is a number in the range of 3-175, and m is a number in the range of 0.3-93.
Abstract:
This invention provide an adhesive tape and a liquid adhesive for electronic parts having sufficient thermal resistance and reliability. The adhesive tape comprises adhesive layers composed of at least a polyimide comprising the repeating units represented by the formulas (1) and (2) on both sides of the substrate, one of said adhesive layer having a higher glass transition temperature than that of the other adhesive layer: ##STR1## wherein X is --SO.sub.2 -- and/or --C(.dbd.O)--OCH.sub.2 CH.sub.2 O--C(.dbd.O)--,Ar is a divalent group containing aromatic rings, and R is an alkylene group having 1 to 10 carbon atoms or --CH.sub.2 OC.sub.6 H.sub.4 --, and n means an integer of 1 to 20.The stustrate may be a resin layer composed of the above mentioned polyimide.
Abstract:
This invention provide an adhesive tape and a liquid adhesive for electronic parts having sufficient thermal resistance and reliability. The adhesive tape comprises an adhesive layer composed of at least a polyimide comprising the repeating units represented by the formulas (1) and (2), provided on surface of a heat resistance film or a release film: ##STR1## wherein X is --SO.sub.2 -- and/or --C(.dbd.O)--OCH.sub.2 CH.sub.2 O--C(.dbd.O)--, Ar is a divalent group containing aromatic rings, and R is an alkylene group having 1 to 10 carbon atoms or --CH.sub.2 OC.sub.6 H.sub.4 --, and n means an integer of 1 to 20.