Abstract:
Embodiments of a closed-contact electroplating cup assembly that may be rapidly cleaned while an electroplating system is on-line are disclosed. One disclosed embodiment comprises a cup assembly and a cone assembly, wherein the cup assembly comprises a cup bottom comprising an opening, a seal surrounding the opening, an electrical contact structure comprising a plurality of electrical contacts disposed around the opening, and an interior cup side that is tapered inwardly in along an axial direction of the cup from a cup top toward the cup bottom.
Abstract:
Embodiments of a closed-contact electroplating cup are disclosed. One embodiment comprises a cup bottom comprising an opening, and a seal disposed on the cup bottom around the opening. The seal comprises a wafer-contacting peak located substantially at an inner edge of the seal. The embodiment also comprises an electrical contact structure disposed over a portion of the seal, wherein the electrical contact structure comprises an outer ring and a plurality of contacts extending inwardly from the outer ring, and wherein each contact has a generally flat wafer-contacting surface. The embodiment further comprises a wafer-centering mechanism configured to center a wafer in the cup.
Abstract:
Chemical etching methods and associated modules for performing the removal of metal from the edge bevel region of a semiconductor wafer are described. The methods and systems provide the thin layer of pre-rinsing liquid before applying etchant at the edge bevel region of the wafer. The etchant is less diluted and diffuses faster through a thinned layer of rinsing liquid. An edge bevel removal embodiment involving that is particularly effective at reducing process time, narrowing the metal taper and allowing for subsequent chemical mechanical polishing, is disclosed.
Abstract:
A negative bias is applied to an integrated circuit wafer immersed in an electrolytic plating solution to generate a DC current. After about ten percent to sixty percent of the final layer thickness has formed in a first plating time, biasing is interrupted during short pauses during a second plating time to generate substantially zero DC current. The pauses are from about 2 milliseconds to 5 seconds long, and typically about 10 milliseconds to 500 milliseconds. Generally, about 2 pauses to 100 pauses are used, and typically about 3 pauses to 15 pauses. Generally, the DC current density during the second plating time is greater than the DC current density during the initial plating time. Typically, the integrated circuit wafer is rotated during electroplating. Preferably, the wafer is rotated at a slower rotation rate during the second plating time than during the first plating time.
Abstract:
Chemical etching methods and associated modules for performing the removal of metal from the edge bevel region of a semiconductor wafer are described. The methods and systems provide the thin layer of pre-rinsing liquid before applying etchant at the edge bevel region of the wafer. The etchant is less diluted and diffuses faster through a thinned layer of rinsing liquid. An edge bevel removal embodiment involving that is particularly effective at reducing process time, narrowing the metal taper and allowing for subsequent chemical mechanical polishing, is disclosed.
Abstract:
Embodiments of a closed-contact electroplating cup are disclosed. One embodiment comprises a cup bottom comprising an opening, and a seal disposed on the cup bottom around the opening. The seal comprises a wafer-contacting peak located substantially at an inner edge of the seal. The embodiment also comprises an electrical contact structure disposed over a portion of the seal, wherein the electrical contact structure comprises an outer ring and a plurality of contacts extending inwardly from the outer ring, and wherein each contact has a generally flat wafer-contacting surface. The embodiment further comprises a wafer-centering mechanism configured to center a wafer in the cup.
Abstract:
Embodiments of a closed-contact electroplating cup assembly that may be rapidly cleaned while an electroplating system is on-line are disclosed. One disclosed embodiment comprises a cup assembly and a cone assembly, wherein the cup assembly comprises a cup bottom comprising an opening, a seal surrounding the opening, an electrical contact structure comprising a plurality of electrical contacts disposed around the opening, and an interior cup side that is tapered inwardly in along an axial direction of the cup from a cup top toward the cup bottom.
Abstract:
Embodiments of a closed-contact electroplating cup are disclosed. One embodiment comprises a cup bottom comprising an opening, and a seal disposed on the cup bottom around the opening. The seal comprises a wafer-contacting peak located substantially at an inner edge of the seal. The embodiment also comprises an electrical contact structure disposed over a portion of the seal, wherein the electrical contact structure comprises an outer ring and a plurality of contacts extending inwardly from the outer ring, and wherein each contact has a generally flat wafer-contacting surface. The embodiment further comprises a wafer-centering mechanism configured to center a wafer in the cup.
Abstract:
Embodiments of a closed-contact electroplating cup assembly that may be rapidly cleaned while an electroplating system is on-line are disclosed. One disclosed embodiment comprises a cup assembly and a cone assembly, wherein the cup assembly comprises a cup bottom comprising an opening, a seal surrounding the opening, an electrical contact structure comprising a plurality of electrical contacts disposed around the opening, and an interior cup side that is tapered inwardly in along an axial direction of the cup from a cup top toward the cup bottom.
Abstract:
Chemical etching methods and associated modules for performing the removal of metal from the edge bevel region of a semiconductor wafer are described. The methods and systems provide the thin layer of pre-rinsing liquid before applying etchant at the edge bevel region of the wafer. The etchant is less diluted and diffuses faster through a thinned layer of rinsing liquid. An edge bevel removal embodiment involving that is particularly effective at reducing process time, narrowing the metal taper and allowing for subsequent chemical mechanical polishing, is disclosed.