Abstract:
The invention relates to a method for producing aryl-aryl coupled compounds. The method is continuous, at least two non-miscible phases (M01) and (B01) being optionally first blended in a mixer (020). The reaction is then carried out continuously in a fixed-bed reactor (030) and subsequently an optional online analysis (060) of the products (P01) takes place.
Abstract:
The present invention relates to a method for testing building blocks, which are identical or different, of a library of materials, comprising at least two building blocks, for performance characteristics, comprising a sequence of the following steps: 4) testing of at least one library building block for at least one performance characteristic; 5) detecting at least one measurable quantity, to which at least one performance characteristic of the at least one library building block can be assigned by at least one sensor, wherein at least one of the steps (4) and (5) is performed continuously.
Abstract:
The present invention is in the field of the high-throughput research for liquid and multi-phase reactions. Thereby, the invention relates to a process for the simultaneous realization of at least one chemical reaction in at least two separate reaction vessels (10), wherein said process comprises at least the following steps: (i) providing at least one reaction mixture per reaction vessel (10); to (ii) pneumatic agitation of the reaction mixture in at least one reaction vessel by means of bringing the reaction mixture into contact with at least one fluid phase (18), wherein the at least one chemical reaction is carried out in at least one of the reaction vessels (10) in the batch mode and the reaction mixture contains at least one liquid phase (14). Thereby, the fluid phase (18) is supplied to the at least one reaction vessel (10) within a defined period and is at least partially discharged from the reaction vessel. The reaction mixturee may further comprise another immiscible liquid phase (14′) and/or solid phase (16). Furthermore, the present invention relates to the device, which pertains to the process.
Abstract:
The present invention relates to a device for the continuous testing of at least two building blocks, which are part of a combinatorial material library. Thereby, said device is in particular characterized in that it comprises at least the following constituent parts: (i) at least one spatially stationary component with at least one means for supply, (ii) at least one spatially non-stationary component as well as (iii) at least one unit for the uptake of a building block. Thereby, at least one building block moves spatially relative to the at least one other building block during the testing.
Abstract:
The present invention relates to a metering station (10) which allows liquids with elevated viscosity to be metered, especially liquids with a viscosity which is more than one hundred times the viscosity of water. The metering station is operated partly or fully automatically and has a modular structure. A metering module (1, 1′) comprises at least one plug connecting element (8), with whose aid the metering module (1, 1′) can be made to engage with a corresponding receiving device (9) for the plug connecting element. The plug connecting elements (8) are preferably multifunctional plugs which have at least one fluidic connecting element. In a further preferred embodiment, the plug connecting element (8), in addition to the at least one fluidic connecting element, also has at least one electrical connecting element for process control. The present invention further relates to a process which allows, in a very flexible manner and with a very high throughput, a multitude of (optionally different) components which have an elevated viscosity to be metered into a sampling vessel. The process uses a metering algorithm which is tailored to the high-throughput metering of liquids of elevated viscosity.
Abstract:
The present invention relates to a method and a device for the parallel study of chemical reactions in at least two spatially separated reaction spaces. In particular, the invention is suitable for reactions which are not constant volume reactions and/or for reactions in which fluid flows through at least two spatially separated reaction spaces are intended to be controlled together for all the reaction spaces, or for related subsets of them, in the most straightforward way possible. According to one embodiment, the device according to the invention for the parallel study of chemical reactions comprises at least the following components: (a) at least two spatially separated reaction spaces; (b) on the reaction space input side, at least one common educt feed for the reaction spaces according to (a); (d) on the reaction space output side, at least one connection per reaction space to at least one holding gas feed common to all the reaction spaces, or subsets of them; (e) on the reaction space output side, and downstream of the connection to the holding gas feed according to (d) in the product flow direction, at least one restrictor per reaction space.
Abstract:
A method and a device for the parallel study of chemical reactions in at least two spatially separated reaction spaces is provided. A device for the parallel study of chemical reactions includes at least the following components: (a) at least two spatially separated reaction spaces; (b) on the reaction space input side, at least one common educt feed for the reaction spaces according to (a); (d) on the reaction space output side, at least one connection per reaction space to at least one holding gas feed common to all the reaction spaces, or subsets of them; (e) on the reaction space output side, and downstream of the connection to the holding gas feed according to (d) in the product flow direction, at least one restrictor per reaction space.
Abstract:
The present invention relates to a method and a device for the parallel study of chemical reactions in at least two spatially separated reaction spaces. In particular, the invention is suitable for reactions which are not constant volume reactions and/or for reactions in which fluid flows through at least two spatially separated reaction spaces are intended to be controlled together for all the reaction spaces, or for related subsets of them, in the most straightforward way possible.According to one embodiment, the device according to the invention for the parallel study of chemical reactions comprises at least the following components: (a) at least two spatially separated reaction spaces; (b) on the reaction space input side, at least one common educt feed for the reaction spaces according to (a); (d) on the reaction space output side, at least one connection per reaction space to at least one holding gas feed common to all the reaction spaces, or subsets of them; (e) on the reaction space output side, and downstream of the connection to the holding gas feed according to (d) in the product flow direction, at least one restrictor per reaction space.
Abstract:
The present invention relates to a method and a device for the parallel study of chemical reactions in at least two spatially separated reaction spaces. In particular, the invention is suitable for reactions which are not constant volume reactions and/or for reactions in which fluid flows through at least two spatially separated reaction spaces are intended to be controlled together for all the reaction spaces, or for related subsets of them, in the most straightforward way possible.According to one embodiment, the device according to the invention for the parallel study of chemical reactions comprises at least the following components: (a) at least two spatially separated reaction spaces; (b) on the reaction space input side, at least one common educt feed for the reaction spaces according to (a); (d) on the reaction space output side, at least one connection per reaction space to at least one holding gas feed common to all the reaction spaces, or subsets of them; (e) on the reaction space output side, and downstream of the connection to the holding gas feed according to (d) in the product flow direction, at least one restrictor per reaction space.
Abstract:
The present invention relates to a method and a device for the parallel study of chemical reactions in at least two spatially separated reaction spaces. In particular, the invention is suitable for reactions which are not constant volume reactions and/or for reactions in which fluid flows through at least two spatially separated reaction spaces are intended to be controlled together for all the reaction spaces, or for related subsets of them, in the most straightforward way possible.According to one embodiment, the device according to the invention for the parallel study of chemical reactions comprises at least the following components: (a) at least two spatially separated reaction spaces; (b) on the reaction space input side, at least one common educt feed for the reaction spaces according to (a); (d) on the reaction space output side, at least one connection per reaction space to at least one holding gas feed common to all the reaction spaces, or subsets of them; (e) on the reaction space output side, and downstream of the connection to the holding gas feed according to (d) in the product flow direction, at least one restrictor per reaction space.