Abstract:
The present invention relates to a process for preparing polyisocyanates from natural raw material sources, in which a composition comprising low molecular weight aromatics which comprise at least one hydroxy group or at least one alkoxy group per molecule (oxyaromatics) is produced from a biomass material, these oxyaromatics are converted into the corresponding aromatic amines and, optionally after condensation with formaldehyde, reacted further with phosgene to give compounds comprising isocyanate groups.
Abstract:
The invention relates to novel silver vanadium phosphates, catalysts based on these silver vanadium phosphates and the use of these catalysts for carrying out organic reactions in the gas phase.
Abstract:
The present invention relates to a composition (“composite”) comprising lignin and at least one catalyst dispersed in the composition. The invention further provides a process for producing such a catalyst- and lignin-comprising composition and its use for preparing an aromatics composition.
Abstract:
A process for preparing an alkali metal or alkaline earth metal salt of an α,β-ethylenically unsaturated carboxylic acid, wherein a) an alkene, carbon dioxide and a carboxylation catalyst are converted to an alkene/carbon dioxide/carboxylation catalyst adduct, b) the adduct is decomposed to release the carboxylation catalyst with an auxiliary base to give the auxiliary base salt of the α,β-ethylenically unsaturated carboxylic acid, c) the auxiliary base salt of the α,β-ethylenically unsaturated carboxylic acid is reacted to release the auxiliary base with an alkali metal or alkaline earth metal base to give the alkali metal or alkaline earth metal salt of the α,β-ethylenically unsaturated carboxylic acid. Salts of α,β-ethylenically unsaturated carboxylic acids, such as sodium acrylate in particular, are required in large amounts, for example, for production of water-absorbing resins.
Abstract:
A process for preparing and converting synthesis gas, which has a plurality of different operating states which consist essentially of mutually alternating (i) daytime operation and (ii) nighttime operation, daytime operation (i) comprising principally dry reforming and steam reforming with supply of renewable energy, and nighttime operation (ii) comprising principally the partial oxidation of hydrocarbons, and the synthesis gas produced being used to produce products of value.
Abstract:
The present invention is in the field of the high-throughput research for liquid and multi-phase reactions. Thereby, the invention relates to a process for the simultaneous realization of at least one chemical reaction in at least two separate reaction vessels (10), wherein said process comprises at least the following steps: (i) providing at least one reaction mixture per reaction vessel (10); to (ii) pneumatic agitation of the reaction mixture in at least one reaction vessel by means of bringing the reaction mixture into contact with at least one fluid phase (18), wherein the at least one chemical reaction is carried out in at least one of the reaction vessels (10) in the batch mode and the reaction mixture contains at least one liquid phase (14). Thereby, the fluid phase (18) is supplied to the at least one reaction vessel (10) within a defined period and is at least partially discharged from the reaction vessel. The reaction mixturee may further comprise another immiscible liquid phase (14′) and/or solid phase (16). Furthermore, the present invention relates to the device, which pertains to the process.
Abstract:
In a process for preparing alcohols by catalytic hydrogenation of carbonyl compounds over a catalyst comprising rhenium on activated carbon, the catalyst used comprises rhenium (calculated as metal) in a weight ratio to the activated carbon of from 0.0001 to 0.5, platinum (calculated as metal) in a weight ratio to the activated carbon of from 0.0001 to 0.5 and, if appropriate, at least one further metal selected from among Zn, Cu, Ag, Au, Ni, Fe, Ru, Mn, Cr, Mo, W and V in a weight ratio to the activated carbon of from 0 to 0.25, and the activated carbon has been nonoxidatively pretreated. It is also possible to prepare ethers and lactones if the hydrogen pressure is not more than 25 bar. In this case, the activated carbon in the catalyst may also have been nonoxidatively pretreated.
Abstract:
Process for the detection of a product in the discharge of a catalytic material of a plurality of catalytic materials which are exposed to a reaction gas, whereby an adsorbent selective for the product to be determined is disposed in the discharge of each catalytic material, which changes at least one of its properties through the contact with the product to be determined and the change in the property of the adsorbent is then ascertained. The process serves in particular to determine the selectivity and activity of catalytic materials.
Abstract:
The present invention relates to a process for producing a catalyst for carrying out methanation reactions. The production of the catalyst is based on contacting of a hydrotalcite-comprising starting material with a fusible metal salt. The compounds brought into contact with one another are intimately mixed, thermally treated so that the metal salt fraction melts and subsequently subjected to a low-temperature calcination step and a high-temperature calcination step. The metal salt melt comprises at least one metal selected from the group consisting of K, La, Fe, Co, Ni, Cu and Ce, preferably Ni. The metal salt melt more preferably comprises/contains nickel nitrate hexahydrate. The hydrotalcite-comprising starting material is preferably hydrotalcite or a hydrotalcite-like compound as starting material, and the hydrotalcite-comprising starting material preferably comprises magnesium and aluminum as metal species.The catalyst of the invention is preferably used for carrying out methanation reactions at elevated pressures (from 10 to 50 bar) and elevated temperatures.
Abstract:
The present invention relates to a process for producing a catalyst for the reforming of hydrocarbons, preferably methane, in the presence of CO2, water and/or hydrogen. The production of the catalyst is based on contacting of a hydrotalcite-comprising starting material with a fusible metal salt. The compounds which have been brought into contact with one another are intimately mixed and treated thermally, resulting in the fusible metal salt forming a melt. After molding, the material is subjected to a high-temperature calcination step. The metal salt melt comprises at least one metal selected from the group consisting of K, La, Fe, Co, Ni, Cu and Ce, preferably Ni. The metal salt melt more preferably comprises nickel nitrate hexahydrate. In addition, the invention relates to the use of the catalyst of the invention for the reforming of hydrocarbons, preferably methane, in the presence of CO2, water and/or hydrogen at elevated pressures which are greater than 5 bar, preferably greater than 10 bar, particularly preferably greater than 20 bar. The catalyst according to the invention is distinguished from the prior art by particular, preferred physicochemical properties.