Abstract:
The present invention relates to a conductive polymer composition which exhibits PTC characteristics (PTC composition) and a PTC device comprising it, wherein the PTC composition comprises: a) at least one crystalline olefin-based polymer and at least one ionomer; and, b) electrically conductive particles which have been dispersed in polymer matrix formed by a). The PTC composition according to the present invention has an enhanced adhesion to electrodes, which minimizes contact resistance and increases the maximum working current (hold current). The PTC device comprising the PTC composition can be used as a circuit protection device which protects circuit from overflowing and which holds initial resistance value although it is reused after multiple short circuit have taken place.
Abstract:
A touch panel is provided. The touch panel includes a substrate, a jumper metal, a first insulation layer, first and second conductive patterns, first and second metal electrodes, and a second insulation layer. The jumper metal is formed on the substrate. The first insulation layer includes an opening and is formed on the jumper metal. The first and second conductive patterns are formed on the first insulation layer. The first and second metal electrodes are respectively connected to end portions of the first and second conductive patterns. The second insulation layer is formed on the first and second conductive patterns and the first and second metal electrodes. One of the first and second conductive patterns is connected by the jumper metal exposed through the opening of the first insulation layer.
Abstract:
A touch panel is provided. The touch panel includes a first conductive pattern, a first insulation layer, a second conductive pattern, a first metal electrode, a second metal electrode, and a second insulation layer. The first conductive pattern is formed on a transparent substrate. The first insulation layer is formed on the first conductive pattern. The second conductive pattern is formed on the first insulation layer. The first metal electrode is connected to one end of the first conductive pattern. The second metal electrode is connected to one end of the second conductive pattern. The second insulation layer is formed on the second conductive pattern, the first metal electrode or the second metal electrode.
Abstract:
A test socket is provided that includes a base material including an insulating elastic material and a conductive portion extending through the base material in a thickness direction of the base material, wherein the conductive portion includes a plurality of conductive particle structures arranged in the thickness direction of the base material, and each of the plurality of conductive particle structures includes a plurality of conductive particles having at least one insulating wire and/or at least one conductive wire extending from a surface of the conductive particle, bonded with a material having a functional group.
Abstract:
A light unit is provided. The light unit includes a PCB mounted with a plurality of LEDs, and a light guide member having a plurality of reception grooves piercing therethrough and receiving the LEDs, wherein the light guide member includes one surface and the other surface opposite to the one surface, and the one surface of the light guide member is further coated with the resin material. The reception grooves are formed in the light guide member and are filled with a fluid resin material, thus preventing the damage to the LED caused by the difference between the thermal expansion rates of the components such as the light guide member, the reflection film and the PCB.
Abstract:
An electroconductive adhesive tape used for electrical and electronic products to bond or fix an element to a support while maintaining an electrical conductivity between the element and support. The electroconductive adhesive tape includes a perforated synthetic film, two metal plating layers respectively formed on both surfaces of the synthetic resin film, and a conductive adhesive layer formed on one of the metal plating layers. Made to be very thin, the film has the advantage of being flexible and high in tensile strength in addition to showing excellent electrical conductivity. The metal plating layers are integratedly formed through the perforations of the synthetic resin film, maintaining excellent electrical conductivity. Thus, the electroconductive adhesive tape maintains a desired strength while exhibiting a high flexibility and a high bondability.
Abstract:
An electrically conductive adhesive tape used for electrical and electronic products to bond or fix an element to a support while maintaining an electrical conductibility between the element and support. The conductive adhesive tape has a structure including a resin film, a metal layer formed over one surface of the resin film by depositing a conductive metal over the surface of the resin film, and a conductive adhesive layer coated over the metal layer. The metal layer has a net-shaped structure. In some cases, the metal layer may have a planar structure. The conductive adhesive tape has a very small thickness by virtue of its metal layer deposited to a very small thickness. Accordingly, the conductive adhesive tape maintains a desired strength while exhibiting a high flexibility and a high bondability, thereby exhibiting a superior conductibility. In the case in which the metal layer has a net-shaped structure, the tape has a structure having spaces where the metal layer does not exist. Where the tape is applied to a Braun tube, accordingly, there is no influence on an electron beam emitted from a deflection yoke while a desired conductibility is maintained. The manufacture of the tape is simple. By virtue of the conductibility, the tape of the present invention also has an elecromagnetic wave shielding function.
Abstract:
The present invention provides a light unit, comprising a printed circuit board equipped with a plurality of LEDs; and a light guide member equipped with mounting grooves to house the LEDs. It is preferred that the light guide member comprises one surface and another surface facing the one surface; a first density pattern area and a second density pattern area having higher density than that of the first density pattern area are formed in the one surface; and the second density pattern is disposed in an area closer to the light emitting surface of the LED than the first density pattern area.According to the present invention, hot spots can be removed by forming high density optical patterns on the upper surface of a light guide member and diffusing the light of LEDs; meanwhile, the transmission range of light can be extended and light extraction efficiency can be improved by disposing low density optical patterns in adjacent areas.
Abstract:
A method for fabricating a large-area nanoscale pattern includes: forming multilayer main thin films isolated by passivation layers; patterning a first main thin film to form a first main pattern; forming a first spacer pattern with respect to the first main pattern; and forming a second main pattern by transferring the first spacer pattern onto a second main thin film. By using multilayer main thin films isolated by different passivation films, spacer lithography capable of reducing a pattern pitch can be repetitively performed, and the pattern pitch is repetitively reduced without shape distortion after formation of micrometer-scale patterns, thereby forming nanometer-scale fine patterns uniformly over a wide area.
Abstract:
A method for fabricating a large-area nanoscale pattern includes: forming multilayer main thin films isolated by passivation layers; patterning a first main thin film to form a first main pattern; forming a first spacer pattern with respect to the first main pattern; and forming a second main pattern by transferring the first spacer pattern onto a second main thin film. By using multilayer main thin films isolated by different passivation films, spacer lithography capable of reducing a pattern pitch can be repetitively performed, and the pattern pitch is repetitively reduced without shape distortion after formation of micrometer-scale patterns, thereby forming nanometer-scale fine patterns uniformly over a wide area.