Abstract:
Encryption of data within a memory is provided by key generation circuitry which serves to generate a key as a function of the address within the memory being accessed and then encryption circuitry or decryption circuitry which serve respectively to encrypt or decrypt the data as a function of the key that has been generated based upon the address. The encryption and the decryption may be performed using a bitwise XOR operation. The key generation circuitry may have the form of physically unclonable function circuitry, which varies from instance to instance of implementation and that operates to generate the same key for the same address upon both write and read operations within the same instance.
Abstract:
Apparatus for storing data and a method of adapting a duration of a wordline pulse in an apparatus for storing data are provided. Sensor circuitry comprises a calibrated bitcell which is calibrated to use a duration of wordline pulse which matches a longest wordline pulse required by any bitcell in an array of bitcells for a successful write operation to be carried out. The duration of wordline pulse is signalled to wordline pulse circuitry, which generates a wordline pulse for the array of bitcells with this wordline pulse duration. The sensor circuitry is configured to adapt the wordline pulse duration in dependence on current local conditions in which the apparatus operates to compensate for influence of the current local conditions on the longest wordline pulse required by any bitcell in the array of bitcells.
Abstract:
A storage circuit 2 in the form of a master slave latch includes a slave stage 6 serving as a bit storage circuit. The slave stage 6 includes an inverter chain which when operating in a normal mode includes an even number of inverters 10, 12 and when operating in an random number generation mode includes an odd number of inverters 10, 12, 14 and so functions as a free running ring oscillator. When a switch is made back from the random number generation mode to the normal mode, then the oscillation ceases and a stable pseudo random bit value is output from the bit value storage circuit 6.
Abstract:
An electrical component is formed with a directed self assembly portion having a random electrical characteristic, such as resistance or capacitance. The random pattern can be produced by using a directed self assembly polymer with guide structures 2 including randomness inducing features. The electrical components with the random electrical characteristics may be used in electrical circuits relying upon random variation in electrical characteristics, such as physically unclonable function circuitry. The electrical components may be resistors and/or capacitors.
Abstract:
Encryption of data within a memory 6 is provided by key generation circuitry 12 which serves to generate a key as a function of the address within the memory 6 being accessed and then encryption circuitry 14 or decryption circuitry 16 which serve respectively to encrypt or decrypt the data as a function of the key that has been generated based upon the address. The encryption and the decryption may be performed using a bitwise XOR operation. The key generation circuitry may have the form of physically unclonable function circuitry, which varies from instance to instance of implementation and that operates to generate the same key for the same address upon both write and read operations within the same instance.
Abstract:
A protected circuit includes a logic circuit having one or more input nodes and one or more output nodes. The logic circuit has a network of logic elements and one or more logic encryption elements. A logic encryption element includes a memory cell, such as a correlated electron switch for example, coupled with a configurable sub-circuit that is configured by a value stored in the memory cell to encrypt a signal or a signal path. A mapping of values at the one or more input nodes to values at the one or more output nodes corresponds to a desired mapping when values stored in the one or more memory cells match component values of a prescribed key vector. The memory cells may be programmed after fabrication of the circuit.
Abstract:
A data storage apparatus is provided which has a plurality of data storage units, each respective data storage unit configured to store a respective data bit of a data word. Stored data value parity generation circuitry is configured to generate a parity bit for the data word in dependence on the data bits of the data word stored in the plurality of data storage units. The stored data value parity generation circuitry is configured such that switching within the stored data value parity generation circuitry does not occur when the data word is read out from the plurality of data storage units. Transition detection circuitry is configured to detect a change in value of the parity bit.
Abstract:
A method and apparatus is provided for wear leveling of a storage medium in an electronic device. Wear leveling is achieved by mapping each logical memory address to a corresponding physical memory address. The mapping information is consistent over an on-period of a power cycle, but changes from one power cycle to another. The mapping information, such as a key value for example, may be stored in non-volatile memory such as, for example, a correlated electron random switch (CES) storage element. The mapping may be obtained by manipulating bits of the logical address to obtain the physical address.
Abstract:
An integrated circuit device has at least one environment-hardened die and at least one less-environment-hardened die. Environment-hardened circuitry on the environment-hardened die is more resistant to the degradation when exposed to a predetermined environmental condition than the less-environment-hardened circuitry on the environment-hardened die. The dice are combined using a 3D or 2.5D integrated circuit technology. This is very useful for testing circuits at adverse environmental conditions (e.g. high temperature), or for providing circuits to operate at such conditions.
Abstract:
An apparatus has a plurality of storage units. A parity generator is configured to generate a parity value in dependence on the respective values stored in the plurality of storage units. The parity generator is configured such that determination of the parity value is independent of a read access to the data stored the plurality of storage units. A detector is configured to detect a change in value of the parity value.