Abstract:
A plasma-based material modification system for material modification of a work piece may include a plasma source chamber coupled to a process chamber. A support structure, configured to support the work piece, may be disposed within the process chamber. The plasma source chamber may include a first plurality of magnets, a second plurality of magnets, and a third plurality of magnets that surround a plasma generation region within the plasma source chamber. The plasma source chamber may be configured to generate a plasma having ions within the plasma generation region. The third plurality of magnets may be configured to confine a majority of electrons of the plasma having energy greater than 10 eV within the plasma generation region while allowing ions from the plasma to pass through the third plurality of magnets into the process chamber for material modification of the work piece.
Abstract:
A method for a recipe of a low temperature implantation comprises: pre-cooling a workpiece transferred from a FOUP to a lower temperature to meet the recipe, implanting the workpiece according to the recipe, and post-heating the workpiece to a higher temperature before returning the workpiece to the FOUP. Further, an ion implanter comprising a process chamber, a FOUP, a cooling module and a heating module is provided. The workpiece can be implanted according to the recipe in the process chamber. The FOUP can transfer the workpiece toward and away from the process chamber. The cooling module is disposed outside the process chamber and can pre-cool the workpiece to the lower temperature to meet the recipe before implanting the workpiece. The heating module is disposed outside the process chamber and can post-heat the workpiece to the higher temperature before returning the workpiece to the FOUP.
Abstract:
Systems and processes for plasma-based material modification of a work piece are provided. In an example process, a first plasma in a plasma source chamber is generated. A magnetic field is generated using a plurality of magnets. The magnetic field confines electrons of the first plasma having energy greater than 10 eV within the plasma source chamber. A second plasma is generated in a process chamber coupled to the plasma source chamber. An ion beam is generated in the process chamber by extracting ions from the first plasma through the plurality of magnets. The ion beam travels through the second plasma and is neutralized by the second plasma to generate a neutral beam. The work piece is positioned in the process chamber such that the neutral beam treats a surface of the work piece.
Abstract:
The present invention provides a deposition apparatus and deposition method using the same. The deposition apparatus comprises: a process chamber, wherein a work piece is disposed therein; a plasma source chamber coupled to the process chamber, the plasma source chamber comprising a first plasma generator for ionizing a first gas in the plasma source chamber to generate a first plasma having ions, the ions of the first plasma with ions bombard the work piece; and a second plasma generator disposed within the process chamber, the second plasma generator ionized a second gas in the process chamber to generate a second plasma having radical, the second plasma having radical deposits a surface of the work piece.