摘要:
A semiconductor integrated circuit device having an SOI structure is capable of preventing occurrence of leak current flowing from a diffusion layer even when a semiconductor element having a pn-junction is included in the semiconductor substrate. The semiconductor integrated circuit device having the SOI structure is formed with a semiconductor layer, or SOI layer, on a p-type semiconductor substrate through a buried insulating film and further with semiconductor circuit elements serving as functional elements at the SOI layer thus formed. As a protection transistor to protect the semiconductor circuit elements, a MOSFET may be formed in which n-type diffusion layers are formed in the semiconductor substrate. The n-type diffusion layers of the MOSFET are to be surrounded by p-type diffusion layers more highly doped than the semiconductor substrate.
摘要:
In a semiconductor integrated circuit device having an input protection circuit element such as a diode formed in the semiconductor substrate, the leak current is suppressed. An nMOS transistor and a pMOS transistor that constitute a CMOS inverter circuit are formed using a SOI structure. An n-type diffusion layer and p-type diffusion layer are formed within the semiconductor substrate to thereby construct a protective diode that forms an input protection circuit for the CMOS inverter circuit. By surrounding the outer periphery of the n-type diffusion layer with the p-type diffusion layer, the depletion layer that is formed at an interface between the semiconductor substrate and a buried insulation film therein is cut off by the p-type diffusion layer, thereby suppressing the leak current between the n-type diffusion layer and the p-type diffusion layer.
摘要:
Methods for manufacturing semiconductor substrates in which a semiconductor layer for forming semiconductor device therein is formed on a supporting substrate with an insulating film interposed between, with which in forming the semiconductor layer on a substrate on which a buried pattern structure has been formed it is possible to greatly increase the film thickness uniformity of the semiconductor layer and the film thickness controllability, particularly when the semiconductor layer is being formed as an extremely thin film. As a result, it is possible to achieve improved quality and characteristics of the semiconductor substrates and make possible the deployment of such semiconductor substrates to various uses.
摘要:
A semiconductor device includes a switching element having: a drift layer; a base region; an element-side first impurity region in the base region; an element-side gate electrode sandwiched between the first impurity region and the drift layer; a second impurity region contacting the drift layer; an element-side first electrode coupled with the element-side first impurity region and the base region; and an element-side second electrode coupled with the second impurity region, and a FWD having: a first conductive layer; a second conductive layer; a diode-side first electrode coupled to the second conductive layer; a diode-side second electrode coupled to the first conductive layer; a diode-side first impurity region in the second conductive layer; and a diode-side gate electrode in the second conductive layer sandwiched between first impurity region and the first conductive layer and having a first gate electrode as an excess carrier injection suppression gate.
摘要:
According to one embodiment, a difference in output at connecting positions among line sensors of a CCD sensor is removed by adjusting the gains of gain amplifiers.
摘要:
An image forming apparatus applies a shading correction to an image read from a white reference board 18, and determines presence or absence of stripe-like noise in the image read therefrom after applying the shading correction. The apparatus exposes an area at which there is no noise in the white reference board 18 to create a white reference value for a shading correction for reading a document after that time.
摘要:
It is made possible to determine image characteristics in a reading image while the image of an original is being read. A first line sensor (9R2, 9G2, 9B2) is arranged on a board and reads the original image. A second line sensor (9K1) has a larger number of pixels than the first line sensor and is arranged on the board to read the original image earlier than the first line sensor. An image signal processing characteristic control unit (46) uses an output of the second line sensor as a control signal to control the processing characteristic of the image signal read by the first line sensor.
摘要:
A 4-line CCD sensor according to one embodiment of the present invention has a monochromic reading line sensor section and a color reading line sensor section. This 4-line CCD sensor is characterized in that amplification factors for amplifiers 1 to 4 are set so that the amplitude of an output signal from the monochromic reading line sensor section is the same as that of each output signal from the color reading line sensor section. This 4-line CCD sensor is characterized in that the amplification factors for the amplifiers 1 to 4 are set so that the amplitude of each output signal from the color reading line sensor section is smaller than that of an output signal from the monochromic reading line sensor section.
摘要:
A 4-line CCD sensor according to one embodiment of the present invention has a monochromic reading line sensor section and a color reading line sensor section. This 4-line CCD sensor is characterized in that amplification factors for amplifiers 1 to 4 are set so that the amplitude of an output signal from the monochromic reading line sensor section is the same as that of each output signal from the color reading line sensor section. This 4-line CCD sensor is characterized in that the amplification factors for the amplifiers 1 to 4 are set so that the amplitude of each output signal from the color reading line sensor section is smaller than that of an output signal from the monochromic reading line sensor section.
摘要:
A light beam position detecting device detects the passage positions of a plurality of light beams for scanning the surface of a photosensitive drum. The light beam position detecting device has a sensor pattern for generating an output which is continuously changed in a wide range with a variation in the passage position of the light beam in a sub-scanning direction perpendicular to a main scanning direction of the light beam. The sensor pattern precisely detects the relative scanning position of the light beam in a wide range. The passage positions of the plurality of light beams for scanning the surface of the photosensitive drum are controlled to a preset position based on the output of the sensor pattern.