摘要:
A method to eliminate program deceleration and to enhance the resistance to program disturbance of a non-volatile floating gate memory cell is disclosed. This method eliminates or minimizes the impact of the hole displacement current. This can be done, for example, by increasing the rise time of the high programming voltage applied to the high voltage terminal. Alternatively, the transistor of the non-volatile floating gate memory cell can be turned off until the voltage applied to the high voltage terminal has reached the programming voltage. This can be done, for example by delaying the voltage applied to either the low voltage terminal or to the control gate to turn on the transistor until the voltage at the high voltage terminal has past the ramp up voltage and has reached a level programming voltage.
摘要:
A method to eliminate program deceleration and to enhance the resistance to program disturbance of a non-volatile floating gate memory cell is disclosed. This method eliminates or minimizes the impact of the hole displacement current. This can be done, for example, by increasing the rise time of the high programming voltage applied to the high voltage terminal. Alternatively, the transistor of the non-volatile floating gate memory cell can be turned off until the voltage applied to the high voltage terminal has reached the programming voltage. This can be done, for example by delaying the voltage applied to either the low voltage terminal or to the control gate to turn on the transistor until the voltage at the high voltage terminal has past the ramp up voltage and has reached a level programming voltage.
摘要:
A method to eliminate program deceleration and to enhance the resistance to program disturbance of a non-volatile floating gate memory cell is disclosed. This method eliminates or minimizes the impact of the hole displacement current. This can be done, for example, by increasing the rise time of the high programming voltage applied to the high voltage terminal. Alternatively, the transistor of the non-volatile floating gate memory cell can be turned off until the voltage applied to the high voltage terminal has reached the programming voltage. This can be done, for example by delaying the voltage applied to either the low voltage terminal or to the control gate to turn on the transistor until the voltage at the high voltage terminal has past the ramp up voltage and has reached a level programming voltage.
摘要:
A method to eliminate program deceleration and to enhance the resistance to program disturbance of a non-volatile floating gate memory cell is disclosed. This method eliminates or minimizes the impact of the hole displacement current. This can be done, for example, by increasing the rise time of the high programming voltage applied to the high voltage terminal. Alternatively, the transistor of the non-volatile floating gate memory cell can be turned off until the voltage applied to the high voltage terminal has reached the programming voltage. This can be done, for example by delaying the voltage applied to either the low voltage terminal or to the control gate to turn on the transistor until the voltage at the high voltage terminal has past the ramp up voltage and has reached a level programming voltage.
摘要:
A semiconductor memory cell, semiconductor memory devices comprising a plurality of the semiconductor memory cells, and methods of using the semiconductor memory cell and devices are described. A semiconductor memory cell includes a substrate having a first conductivity type; a first region embedded in the substrate at a first location of the substrate and having a second conductivity type; a second region embedded in the substrate at a second location of the substrate and have the second conductivity type, such that at least a portion of the substrate having the first conductivity type is located between the first and second locations and functions as a floating body to store data in volatile memory; a trapping layer positioned in between the first and second locations and above a surface of the substrate; the trapping layer comprising first and second storage locations being configured to store data as nonvolatile memory independently of one another, and a control gate positioned above the trapping layer.
摘要:
A method for performing a holding operation to a semiconductor memory array having rows and columns of memory cells, includes: applying an electrical signal to buried regions of the memory cells, wherein each of the memory cells comprises a floating body region defining at least a portion of a surface of the memory cell, the floating body region having a first conductivity type; and wherein the buried region of each memory cell is located within the memory cell and located adjacent to the floating body region, the buried region having a second conductivity type.
摘要:
An integrated circuit including a link or string of semiconductor memory cells, wherein each memory cell includes a floating body region for storing data. The link or string includes at least one contact configured to electrically connect the memory cells to at least one control line, and the number of contacts in the string or link is the same as or less than the number of memory cells in the string or link.
摘要:
Semiconductor memory is provided wherein a memory cell includes a capacitorless transistor having a floating body configured to store data as charge therein when power is applied to the cell. The cell further includes a nonvolatile memory comprising a resistance change element configured to store data stored in the floating body under any one of a plurality of predetermined conditions. A method of operating semiconductor memory to function as volatile memory, while having the ability to retain stored data when power is discontinued to the semiconductor memory is described.
摘要:
A semiconductor memory cell includes a floating body region configured to be charged to a level indicative of a state of the memory cell; a first region in electrical contact with said floating body region; a second region in electrical contact with said floating body region and spaced apart from said first region; a gate positioned between said first and second regions; and a back-bias region configured to inject charge into or extract charge out of said floating body region to maintain said state of the memory cell. Application of back bias to the back bias region offsets charge leakage out of the floating body and performs a holding operation on the cell. The cell may be a multi-level cell. Arrays of memory cells are disclosed for making a memory device.
摘要:
Semiconductor memory having both volatile and non-volatile modes and methods of operation. A semiconductor memory cell includes a substrate, a floating body to store data in volatile memory and a floating gate or trapping layer configured to receive transfer of data stored by the volatile memory and store the data as nonvolatile memory in the floating gate or trapping layer upon interruption of power to the memory cell.