摘要:
An FET device and method of making comprising a first dielectric layer; a substrate layer on the dielectric layer; a channel region of a first conductivity type formed in the substrate layer; a gate formed above the substrate layer over the channel region; FET diffusion regions of a second conductivity type formed in the substrate layer, the diffusion regions each having edges, the edges of the FET diffusion regions being separated by the channel region; and a body contact region of the first conductivity type extending continuously from the channel region. The first conductivity type material in the body contact region is thinner than the first conductivity type material in the channel region. The FET also includes a second dielectric layer formed on the body contact region.
摘要:
An FET device and method of making comprising a first dielectric layer; a substrate layer on the dielectric layer; a channel region of a first conductivity type formed in the substrate layer; a gate formed above the substrate layer over the channel region; FET diffusion regions of a second conductivity type formed in the substrate layer, the diffusion regions each having edges, the edges of the FET diffusion regions being separated by the channel region; and a body contact region of the first conductivity type extending continuously from the channel region. The first conductivity type material in the body contact region is thinner than the first conductivity type material in the channel region. The FET also includes a second dielectric layer formed on the body contact region.
摘要:
A device and method for providing an integrated circuit with a unique identification. The device is usable on an integrated circuit (IC) for generating an identification (ID) identifying the IC and includes a plurality of identification cells each utilizing one of a four wire resistor, thin film resistors, and an inverter pair. A measurement circuit measures a parameter of each cell and is utilized in generating the ID in response thereto.
摘要:
A method of forming a semiconductor device. A first dielectric layer is deposited on and in direct mechanical contact with the substrate. A first hard mask is deposited on the first dielectric layer. A first and second trench is formed within the first dielectric layer and the first hard mask. The second trench is wider than the first trench. A first conformal liner is deposited over the first hard mask and within the first and second trenches, a portion of which is removed, leaving a remaining portion of the first conformal liner in direct physical contact with the substrate, the first dielectric layer, and the first hard mask, and not on the first hard mask. Copper is deposited over the first conformal liner to overfill fill the first and second trenches and is planarized to remove an excess thereof to form a planar surface of the copper.
摘要:
A method of forming a semiconductor device, and the device so formed. Depositing a low dielectric constant material on a substrate. Depositing a hard mask on the low dielectric constant material. Forming an at least one first feature within the low dielectric constant material and the hard mask. Depositing a conformal liner over the hard mask and within the at least one feature, wherein the liner occupies more than at least 2% of a volume of the at least one feature, and wherein a thickness of the liner is at least approximately ⅓ a minimum width of the at least one feature. Metallizing the at least one feature.
摘要:
Air-gap insulated interconnection structures and methods of fabricating the structures, the methods including: forming a dielectric layer on a substrate; forming a capping layer on a top surface of the dielectric layer; forming a trench through the capping layer, the trench extending toward said substrate and into but not through, the dielectric layer; forming a sacrificial layer on opposing sidewalls of the trench; filling the trench with a electrical conductor; and removing a portion of the sacrificial layer from between the electrical conductor and the dielectric layer to form air-gaps.
摘要:
An IC chip comprising, a nearby or remote source capable of particle emissions; circuitry formed in the IC chip that is adversely affected by impacts of particle emissions from said source; and a particle detector formed in the IC chip between the circuitry and source for detecting said particle emissions. In one embodiment of the present invention, the source comprises a solder ball that is formed on a surface of the IC chip, and the solder ball is capable of emitting alpha-particles. The particle emissions detector of the present invention is a reverse biased Schottky diode. The IC chip is formed by (a) providing an IC chip having at least one layer of particle sensitive circuitry formed therein; (b) forming another layer having at least one particle sensor region situated therein on a surface of said IC chip; and (c) optionally, forming at least one particle emission source over said another layer.
摘要:
In order to reduce power dissipation requirements, obtain full potential transistor performance and avoid power dissipation limitations on transistor performance in high density integrated circuits, transistors are operated in a sub-threshold (sub-Vth) or a near sub-Vth voltage regime (generally about 0.2 volts rather than a super-Vth regime of about 1.2 volts or higher) and optimized for such operation, particularly through simplification of the transistor structure, since intrinsic channel resistance is dominant in sub-Vth operating voltage regimes. Such simplifications include an underlap or recess of the source and drain regions from the gate which avoids overlap capacitance to partially recover loss of switching speed otherwise caused by low voltage operation, an ultra-thin gate structure having a thickness of 500 Å or less which also simplifies forming connections to the transistor and an avoidance of silicidation or alloy formation in the source, drain and/or gate of transistors.
摘要:
Air-gap insulated interconnection structures and methods of fabricating the structures, the methods including: forming a dielectric layer on a substrate; forming a capping layer on a top surface of the dielectric layer; forming a trench through the capping layer, the trench extending toward said substrate and into but not through, the dielectric layer; forming a sacrificial layer on opposing sidewalls of the trench; filling the trench with a electrical conductor; and removing a portion of the sacrificial layer from between the electrical conductor and the dielectric layer to form air-gaps.
摘要:
An IC chip comprising, a nearby or remote source capable of particle emissions; circuitry formed in the IC chip that is adversely affected by impacts of particle emissions from said source; and a particle detector formed in the IC chip between the circuitry and source for detecting said particle emissions. In one embodiment of the present invention, the source comprises a solder ball that is formed on a surface of the IC chip, and the solder ball is capable of emitting alpha-particles. The particle emissions detector of the present invention is a reverse biased Schottky diode. The IC chip is formed by (a) providing an IC chip having at least one layer of particle sensitive circuitry formed therein; (b) forming another layer having at least one particle sensor region situated therein on a surface of said IC chip; and (c) optionally, forming at least one particle emission source over said another layer.