摘要:
Techniques of the present invention include detecting a touchdown between a read/write head of a disk drive and a surface of a magnetic disk using multiple touchdown sensors located at an air-bearing surface (ABS). The multiple sensors increase the likelihood that a touchdown event—i.e., a portion of the ABS of the head contacting the underlying magnetic disk surface—will be detected. During touchdown, the portion of the head contacting the magnetic disk generates frictional heat which changes a characteristic (e.g., the electrical resistance) of at least one of the sensors located at the ABS. When the sensors are connected to a detection circuit, the changing characteristic may be monitored to identify a touchdown event. The touchdown sensors may be, for example, electrically connected in either series or parallel to the detection circuit. Thus, as long as the electrical resistance of one of the sensors is changed, a touchdown event may be detected.
摘要:
Techniques of the present invention include detecting a touchdown between a read/write head of a disk drive and a surface of a magnetic disk using multiple touchdown sensors located at an air-bearing surface (ABS). The multiple sensors increase the likelihood that a touchdown event—i.e., a portion of the ABS of the head contacting the underlying magnetic disk surface—will be detected. During touchdown, the portion of the head contacting the magnetic disk generates frictional heat which changes a characteristic (e.g., the electrical resistance) of at least one of the sensors located at the ABS. When the sensors are connected to a detection circuit, the changing characteristic may be monitored to identify a touchdown event. The touchdown sensors may be, for example, electrically connected in either series or parallel to the detection circuit. Thus, as long as the electrical resistance of one of the sensors is changed, a touchdown event may be detected.
摘要:
A method for manufacturing a magnetic write head having a leading magnetic shield and a trailing magnetic shield that are arranged to prevent the lost of magnetic write field to the trailing magnetic shield. The write head includes a non-magnetic step layer that provides additional spacing between the trailing magnetic shield and the write pole at a region removed from the air bearing surface.
摘要:
A method for manufacturing a magnetic write head having a leading magnetic shield and a trailing magnetic shield that are arranged to prevent the lost of magnetic write field to the trailing magnetic shield. The write head includes a non-magnetic step layer that provides additional spacing between the trailing magnetic shield and the write pole at a region removed from the air bearing surface.
摘要:
A magnetic write head having a tapered trailing edge and having a magnetic layer formed over a trailing edge of the write pole at a location recessed from the ABS, the magnetic layer being separated from the trailing edge of the write pole by a thin non-magnetic layer. The thin non-magnetic layer is preferably sufficiently thin that the magnetic layer can function as a portion of the write pole in a region removed from the ABS. A trailing magnetic shield is formed over the write pole and is separated from the write pole by a non-magnetic trailing gap layer. A non-magnetic spacer layer can be formed over the magnetic layer to provide additional separation between the magnetic layer and the trailing magnetic shield.
摘要:
A magnetic write head having a tapered trailing edge and having a magnetic layer formed over a trailing edge of the write pole at a location recessed from the ABS, the magnetic layer being separated from the trailing edge of the write pole by a thin non-magnetic layer. The thin non-magnetic layer is preferably sufficiently thin that the magnetic layer can function as a portion of the write pole in a region removed from the ABS. A trailing magnetic shield is formed over the write pole and is separated from the write pole by a non-magnetic trailing gap layer. A non-magnetic spacer layer can be formed over the magnetic layer to provide additional separation between the magnetic layer and the trailing magnetic shield.
摘要:
A magnetic head having an air bearing surface (ABS) and a first pole tip. A second pole tip is spaced apart from and facing the upper end of the first pole tip across a write gap. A bump extends into a portion of the upper end of the first pole tip and a portion of the bottom end of the second pole tip, the bump being positioned away from the ABS. The bump defines a throat height of the first and second pole tips.
摘要:
A magnetic write head having a write pole with a tapered trailing edge. The write head has a non-magnetic step layer and a non-magnetic bump formed on the front edge of the magnetic step layer. A non-magnetic trailing gap layer is formed over the tapered trailing edge of the write pole and over the non-magnetic bump and over the non-magnetic step layer. A magnetic trailing shield is formed over at least a portion of the non-magnetic gap layer.
摘要:
A magnetic write pole having a structure that prevents thermally induced pole tip protrusion. The write head has a return pole with a magnetic pedestal formed at the air bearing surface (ABS) and a back gap at an end opposite the ABS. An electrically conductive write coil having a plurality of turns passes over the return pole. A fill layer of a material having a low coefficient of thermal expansion, such as alumina is disposed between the coil and the pedestal, and may extend over the top of the coil to the back gap. A photoresist coil insulation layer may be provided between the turns of the coil to insulate the turns of the coil from one another. The photoresist coil insulation layer can also extend to the back gap. A write pole, formed above the return pole and coil is magnetically connected with the back gap layer and return pole by a magnetic shaping layer.
摘要:
A novel magnetic imaging microscope test system with high spatial (1–10 nm) and temporal (˜1 ns) resolution of the magnetic field is disclosed, as well as the system application for characterization of read and write heads for magnetic recording. The test system includes a scanner assembly and a work piece holder for holding a work piece to be tested. The scanner assembly and the work piece holder are positionable relative to each other at very fine resolution during scanning. A probe arm is cantilevered from the scanner assembly to bring a probe head into close proximity to the work piece holder. The probe head is configured scan a work piece in contacting engagement therewith so that a magnetic device on the probe head magnetically interacts with a magnetic field generating or magnetic field sensing device on the work piece. A probe head for use in the test system and a related test method are also disclosed.