摘要:
The present invention relates to a bone substitute comprising a core based on hydroxyapatite (HA), obtained from at least one porous wood, or based on collagen fibers and hydroxyapatite, and a shell, based on hydroxyapatite (HA) or silicon carbide (SiC), obtained from at least one wood having a lower porosity than the at least one wood of the core. The porous wood has a total porosity of between 60% and 95%, preferably between 65% and 85%, and it is selected from amongst the choices of rattan, pine, abachi and balsa wood. The wood of the shell has a porosity of between 20% and 60%, preferably between 30% and 50%. The bone substitute is utilized for the substitution and regeneration of bone, preferably for bones subjected to mechanical loads, such as long bones of the leg and arm, preferably the tibia, metatarsus, femur, humerus or radius.
摘要:
The present invention relates to a bone substitute comprising a core based on hydroxyapatite (HA), obtained from at least one porous wood, or based on collagen fibres and hydroxyapatite, and a shell, based on hydroxyapatite (HA) or silicon carbide (SiC), obtained from at least one wood having a lower porosity than the at least one wood of the core. The porous wood has a total porosity of between 60% and 95%, preferably between 65% and 85%, and it is selected from amongst the choices of rattan, pine, abachi and balsa wood. The wood of the shell has a porosity of between 20% and 60%, preferably between 30% and 50%. The bone substitute is utilized for the substitution and regeneration of bone, preferably for bones subjected to mechanical loads, such as long bones of the leg and arm, preferably the tibia, metatarsus, femur, humerus or radius.
摘要:
The present invention relates to a hydroxyapatite multi-substituted with, physiologically compatible ion species and to its biohybrid composite with a natural and/or synthetic polymer, which are useful in the preparation of a biomimetic bone substitute for treating bone tissue defects. Furthermore, the present invention relates to a method for their preparation and uses .
摘要:
The present invention relates to a hydroxyapatite multi-substituted with, physiologically compatible ion species and to its biohybrid composite with a natural and/or synthetic polymer, which are useful in the preparation of a biomimetic bone substitute for treating bone tissue defects. Furthermore, the present invention relates to a method for their preparation and uses.
摘要:
The present invention relates to a multilayer structure (1) including a first upper layer (2) consisting of an organic matrix including collagen and at least a lower layer (3, 4, . . . 10) consisting of a composite matrix including hydroxylapatite and collagen. Furthermore, the present invention relates to a cartilaginous substitute including said multilayer structure (1) as well as an osteochondral substitute including said multilayer structure (1). Finally, the present invention relates to the use of said multilayer structure (1) for the preparation of said cartilaginous substitute and said osteochondral substitute for the treatment of cartilaginous defects and osteochondral defects or for the neo-formation of a cartilaginous tissue and/or a subchondral bone tissue.
摘要:
The present invention relates to a multilayer structure (1) including a first upper layer (2) consisting of an organic matrix including collagen and at least a lower layer (3, 4, . . . 10) consisting of a composite matrix including hydroxylapatite and collagen. Furthermore, the present invention relates to a cartilaginous substitute including said multilayer structure (1) as well as an osteochondral substitute including said multilayer structure (1). Finally, the present invention relates to the use of said multilayer structure (1) for the preparation of said cartilaginous substitute and said osteochondral substitute for the treatment of cartilaginous defects and osteochondral defects or for the neo-formation of a cartilaginous tissue and/or a subchondral bone tissue.
摘要:
The present invention relates to hydroxyapatite doped with Fe2+ ions and Fe3+ ions which partially substitute the calcium ions in the crystal lattice. The hydroxyapatite is characterized by an intrinsic magnetism of 0.05 to 8 emu/g, measured by applying a magnetic field of 34 Oe, due to the presence of magnetic nano-domains in the crystal lattice of HA, given the limited amount of magnetic secondary phases present, less than about 3% by volume.The intrinsically magnetic hydroxyapatite can be loaded with biological substances selected in the group consisting of proteins, genes, stem cells, growth factors, vascularization factors, active substances and drugs, under the control of an external magnetic field, as a carrier and release agent for biological substances or drugs, as a contrast agent in diagnostics or for bone or osteocartilage regeneration.
摘要:
The present invention relates to hydroxyapatite doped with Fe2+ ions and Fe3+ ions which partially substitute the calcium ions in the crystal lattice. The hydroxyapatite is characterized by an intrinsic magnetism of 0.05 to 8 emu/g, measured by applying a magnetic field of 34 Oe, due to the presence of magnetic nano-domains in the crystal lattice of HA, given the limited amount of magnetic secondary phases present, less than about 3% by volume.The intrinsically magnetic hydroxyapatite can be loaded with biological substances selected in the group consisting of proteins, genes, stem cells, growth factors, vascularization factors, active substances and drugs, under the control of an external magnetic field, as a carrier and release agent for biological substances or drugs, as a contrast agent in diagnostics or for bone or osteocartilage regeneration.
摘要:
A pin for the anchoring of articular prostheses includes a connecting portion (4) with a prosthesis (2) and an engagement portion (5) in a hole obtained within a bone. The engagement portion (5) is at least partly deformable in a radial direction and in a resilient way, in order to allow the instantaneous blocking of the pin (1) in the hole and the primary fixing of the prosthesis (2) on the bone, so as to al low an easy primary fixing of the prosthesis by simply introducing with a pressure the connecting portion in the hole obtained within the bone itself.