Abstract:
An deposition apparatus for forming a deposition material layer on a substrate is described. The deposition apparatus includes a substrate support adapted for holding a substrate; and an edge (660) exclusion mask (640) for covering a periphery of the substrate (610) during layer deposition. The mask has at least one frame portion defining an aperture. The at least one frame portion of the mask is adapted for being moved (670,680) with respect to the substrate depending on the amount of deposition material deposited on the at least one frame portion of the mask. Further, a method for depositing a deposition material layer on a substrate using an edge exclusion mask is described.
Abstract:
A sputter deposition source for depositing a material on a substrate is described. The sputter deposition source includes an array of magnetron sputter cathodes arranged in a row for coating the substrate in a deposition area on a front side of the array. At least one magnetron sputter cathode of the array includes a first rotary target rotatable around a first rotation axis (A1); and a first magnet assembly arranged in the first rotary target and configured to provide a closed plasma racetrack (P) on a surface of the first rotary target that extends along the first rotation axis (A1) on a first side and on a second side of the at least one magnetron sputter cathode. Further described is a magnetron sputter cathode for a sputter deposition source and a method of depositing a material on a substrate.
Abstract:
A temperature-controlled shield for an evaporation source is described. The temperature-controlled shield is configured to provide a pre-heating zone or a post-cooling zone.
Abstract:
A mask arrangement for masking a substrate in a processing chamber is provided. The mask arrangement includes a mask frame having one or more frame elements and is configured to support a mask device, wherein the mask device is connectable to the mask frame; and at least one actuator connectable to at least one frame element of the one or more frame elements, wherein the at least one actuator is configured to apply a force to the at least one frame element.
Abstract:
A method of operating a deposition apparatus is provided. The method comprises: Deposition of an evaporated source material on a substrate by guiding the evaporated source material from one or more outlets of an evaporation source toward the substrate, wherein part of the evaporated source material is blocked by and attaches to a shielding device arranged between the one or more outlets and the substrate, followed by a cleaning of the shielding device by at least locally heating the shielding device for releasing at least part of the attached source material from the shielding device. According to a further aspect, a deposition apparatus is provided that can be operated according to the described methods.
Abstract:
A dynamic load lock chamber that includes a plurality of actuators positioned along its length to achieve a desired pressure gradient from an atmospheric pressure side to a processing pressure side of the chamber is provided. The chamber includes a transport belt continuously running through the chamber to transport substrates from the atmospheric pressure side to the processing pressure side of the chamber, if situated on an inlet side of a production line, and from the processing pressure side to the atmospheric pressure side of the chamber, if positioned on an outlet side of the production line. Separation mechanisms may be attached to the belt to separate discrete regions within the chamber into a plurality of discrete volumes. Substrates may be disposed between the separation mechanisms, such that separation between adjacent pressure regions within the chamber is maintained as the substrates are transported through the chamber.
Abstract:
One or more heating assemblies for a material deposition apparatus for pre-heating a substrate before entering a material deposition area and/or for post-heating the substrate after exiting the material deposition area are described.
Abstract:
A vapor deposition apparatus is described. The vapor deposition apparatus includes a substrate support for supporting a substrate to be coated; a vapor source with a plurality of nozzles for directing vapor toward the substrate support through a vapor propagation volume; and a heatable shield extending from the vapor source toward the substrate support. The heatable shield surrounds the vapor propagation volume at least partially and includes an edge exclusion portion for masking areas of the substrate not to be coated. The substrate support may be a rotatable drum with a curved drum surface, and the vapor deposition apparatus may be configured to move the substrate on the curved drum surface past the vapor source in a circumferential direction.