摘要:
Hemispheres and spheres are formed and employed for a plurality of applications. Hemispheres are employed to form a substrate having an upper surface and a lower surface. The upper surface includes peaks of pillars which have a base attached to the lower surface. The peaks have a density defined at the upper surface by an array of hemispherical metal structures that act as a mask during an etch to remove substrate material down to the lower surface during formation of the pillars. The pillars are dense and uniform and include a microscale average diameter. The spheres are formed as independent metal spheres or nanoparticles for other applications.
摘要:
Hemispheres and spheres are formed and employed for a plurality of applications. Hemispheres are employed to form a substrate having an upper surface and a lower surface. The upper surface includes peaks of pillars which have a base attached to the lower surface. The peaks have a density defined at the upper surface by an array of hemispherical metal structures that act as a mask during an etch to remove substrate material down to the lower surface during formation of the pillars. The pillars are dense and uniform and include a microscale average diameter. The spheres are formed as independent metal spheres or nanoparticles for other applications.
摘要:
Hemispheres and spheres are formed and employed for a plurality of applications. Hemispheres are employed to form a substrate having an upper surface and a lower surface. The upper surface includes peaks of pillars which have a base attached to the lower surface. The peaks have a density defined at the upper surface by an array of hemispherical metal structures that act as a mask during an etch to remove substrate material down to the lower surface during formation of the pillars. The pillars are dense and uniform and include a microscale average diameter. The spheres are formed as independent metal spheres or nanoparticles for other applications.
摘要:
A method for fabricating a photovoltaic device includes performing a gettering process in a processing chamber which restricts formation of a layer of gettering materials on a substrate and forming a solder layer on the substrate. The solder layer is annealed to form uniformly distributed solder dots which grow on the substrate. The substrate is etched using the solder dots to protect portions of the substrate and form cones in the substrate such that the cones provide a three-dimensional radiation absorbing structure for the photovoltaic device.
摘要:
A substrate for photovoltaic device includes a textured surface formed from silicon-based material. The textured surface includes a plurality of cones uniformly distributed across the textured surface. The uniformly distributed cones are configured by etching from a top surface of the substrate using a self-assembled solder dot mask evaporated on the substrate prior to etching. The cones are uniformly distributed as a result of gettering a process chamber prior to forming the solder dot mask. The cones have a height/width ratio between about 1 to about 4, and the cones have a density between 108 to 109 cones/cm2.
摘要翻译:用于光伏器件的衬底包括由硅基材料形成的纹理表面。 纹理表面包括均匀分布在纹理化表面上的多个锥体。 均匀分布的锥体通过在蚀刻之前使用在衬底上蒸发的自组装焊点掩模从衬底的顶表面进行蚀刻而配置。 由于在形成焊点掩模之前吸收处理室,锥体均匀分布。 锥体具有约1至约4之间的高度/宽度比,并且锥体具有在108至109锥/ cm 2之间的密度。
摘要:
A substrate for photovoltaic device includes a textured surface formed from silicon-based material. The textured surface includes a plurality of cones uniformly distributed across the textured surface. The uniformly distributed cones are configured by etching from a top surface of the substrate using a self-assembled solder dot mask evaporated on the substrate prior to etching. The cones are uniformly distributed as a result of gettering a process chamber prior to forming the solder dot mask. The cones have a height/width ratio between about 1 to about 4, and the cones have a density between 108 to 109 cones/cm2.
摘要翻译:用于光伏器件的衬底包括由硅基材料形成的纹理表面。 纹理表面包括均匀分布在纹理化表面上的多个锥体。 均匀分布的锥体通过在蚀刻之前使用在衬底上蒸发的自组装焊点掩模从衬底的顶表面进行蚀刻而配置。 由于在形成焊点掩模之前吸收处理室,锥体均匀分布。 锥体具有约1至约4之间的高度/宽度比,并且锥体具有在108至109锥/ cm 2之间的密度。
摘要:
A method for fabricating a photovoltaic device includes performing a gettering process in a processing chamber which restricts formation of a layer of gettering materials on a substrate and forming a solder layer on the substrate. The solder layer is annealed to form uniformly distributed solder dots which grow on the substrate. The substrate is etched using the solder dots to protect portions of the substrate and form cones in the substrate such that the cones provide a three-dimensional radiation absorbing structure for the photovoltaic device.
摘要:
Hemispheres and spheres are formed and employed for a plurality of applications. Hemispheres are employed to form a substrate having an upper surface and a lower surface. The upper surface includes peaks of pillars which have a base attached to the lower surface. The peaks have a density defined at the upper surface by an array of hemispherical metal structures that act as a mask during an etch to remove substrate material down to the lower surface during formation of the pillars. The pillars are dense and uniform and include a microscale average diameter. The spheres are formed as independent metal spheres or nanoparticles for other applications.
摘要:
A photovoltaic device and method include forming a plurality of pillar structures in a substrate, forming a first electrode layer on the pillar structures and forming a continuous photovoltaic stack including an N-type layer, a P-type layer and an intrinsic layer on the first electrode. A second electrode layer is deposited over the photovoltaic stack such that gaps or fissures occur in the second electrode layer between the pillar structures. The second electrode layer is wet etched to open up the gaps or fissures and reduce the second electrode layer to form a three-dimensional electrode of substantially uniform thickness over the photovoltaic stack.
摘要:
Methods for forming a photovoltaic device include forming a buffer layer between a transparent electrode and a p-type layer. The buffer layer includes a work function that falls substantially in a middle of a barrier formed between the transparent electrode and the p-type layer to provide a greater resistance to light induced degradation. An intrinsic layer and an n-type layer are formed over the p-type layer.