Abstract:
The disclosure relates to reversible bonded structural joints using active adhesive compositions that can allow for dis-assembly, repair, and re-assembly. The disclosure is particularly directed to the adhesive composition material, irrespective of the type of the substrate(s) being joined. The adhesive composition can include any thermoplastic adhesive material that can be remotely activated for targeted heating of just the adhesive composition (e.g., and not the surrounding substrates being joined) via the inclusion of electromagnetically excitable particles in the adhesive composition. The substrates can be any metal material, any composite material, any hybrid material, or otherwise. The disclosed adhesive compositions allow for recyclability of parts at the end of their lifetime and repair/replacement of parts during their lifetime.
Abstract:
A multilayer composite includes adjacent filler layers having a filler material dispersed within a first polymeric matrix and an intervening-layer disposed between the adjacent filler layers. The intervening-layer comprises nanoplatelets embedded within a second polymeric matrix and are aligned substantially parallel to the adjacent filler layers. The intervening-layer is configured to fail upon application of a force to the multilayer composite that is greater than or equal to a predetermined force threshold.
Abstract:
An inexpensive, easily renewable bioelectronic device useful for bioreactors, biosensors, and biofuel cells includes an electrically conductive carbon electrode and a bioelectronic interface bonded to a surface of the electrically conductive carbon electrode, wherein the bioelectronic interface includes catalytically active material that is electrostatically bound directly or indirectly to the electrically conductive carbon electrode to facilitate easy removal upon a change in pH, thereby allowing easy regeneration of the bioelectronic interface.
Abstract:
The disclosure relates to reversible bonded structural joints using active adhesive compositions that can allow for dis-assembly, repair, and re-assembly. The disclosure is particularly directed to the adhesive composition material, irrespective of the type of the substrate(s) being joined. The adhesive composition can include any thermoplastic adhesive material that can be remotely activated for targeted heating of just the adhesive composition (e.g., and not the surrounding substrates being joined) via the inclusion of electromagnetically excitable particles in the adhesive composition. The substrates can be any metal material, any composite material, any hybrid material, or otherwise. The disclosed adhesive compositions allow for recyclability of parts at the end of their lifetime and repair/replacement of parts during their lifetime.
Abstract:
An inexpensive, easily renewable bioelectronic device useful for bioreactors, biosensors, and biofuel cells includes an electrically conductive carbon electrode and a bioelectronic interface bonded to a surface of the electrically conductive carbon electrode, wherein the bioelectronic interface includes catalytically active material that is electrostatically bound directly or indirectly to the electrically conductive carbon electrode to facilitate easy removal upon a change in pH, thereby allowing easy regeneration of the bioelectronic interface.