摘要:
A multi-layer transparent composite detection technique includes producing two beams from a single, low-coherence source, a test beam and a reference beam, and scanning the reference beam to determine, with high precision, the depths of flaws (e.g., delaminations, bubbles, inclusions or other reflective or scattering objects) within a specimen or test object. The techniques combine light back-reflected or back-scattered from an internal flaw or interface with light in a reference path to identify such features and locations.
摘要:
The disclosure relates to reversible bonded structural joints using active adhesive compositions that can allow for dis-assembly, repair, and re-assembly. The disclosure is particularly directed to the adhesive composition material, irrespective of the type of the substrate(s) being joined. The adhesive composition can include any thermoplastic adhesive material that can be remotely activated for targeted heating of just the adhesive composition (e.g., and not the surrounding substrates being joined) via the inclusion of electromagnetically excitable particles in the adhesive composition. The substrates can be any metal material, any composite material, any hybrid material, or otherwise. The disclosed adhesive compositions allow for recyclability of parts at the end of their lifetime and repair/replacement of parts during their lifetime.
摘要:
A multi-layer transparent composite detection technique includes producing two beams from a single, low-coherence source, a test beam and a reference beam, and scanning the reference beam to determine, with high precision, the depths of flaws (e.g., delaminations, bubbles, inclusions or other reflective or scattering objects) within a specimen or test object. The techniques combine light back-reflected or back-scattered from an internal flaw or interface with light in a reference path to identify such features and locations.
摘要:
A multilayer composite includes adjacent filler layers having a filler material dispersed within a first polymeric matrix and an intervening-layer disposed between the adjacent filler layers. The intervening-layer comprises nanoplatelets embedded within a second polymeric matrix and are aligned substantially parallel to the adjacent filler layers. The intervening-layer is configured to fail upon application of a force to the multilayer composite that is greater than or equal to a predetermined force threshold.
摘要:
The disclosure relates to reversible bonded structural joints using active adhesive compositions that can allow for dis-assembly, repair, and re-assembly. The disclosure is particularly directed to the adhesive composition material, irrespective of the type of the substrate(s) being joined. The adhesive composition can include any thermoplastic adhesive material that can be remotely activated for targeted heating of just the adhesive composition (e.g., and not the surrounding substrates being joined) via the inclusion of electromagnetically excitable particles in the adhesive composition. The substrates can be any metal material, any composite material, any hybrid material, or otherwise. The disclosed adhesive compositions allow for recyclability of parts at the end of their lifetime and repair/replacement of parts during their lifetime.