摘要:
A method and apparatus for protected execution of graphics are described. In one embodiment, the method includes the formation of a translation table for a trusted application. In one embodiment, the translation table is formed according to one or more protected pages assigned to the trusted application in response to a protected page request from the trusted application. During execution of the trusted application, a virtual address space of the trusted application is translated to the one or more protected pages assigned to the trusted application. In one embodiment, the translation is performed according to the translation table assigned to the trusted application. Accordingly, by assigning a unique translation table to each trusted application, the various trusted applications may execute within the platform without generating an access into another application's physical address space. Other embodiments are described and claimed.
摘要:
A graphics engine may include a decryption device, a renderer, and a sprite or overlay engine, all connected to a display. A memory may have a protected and non-protected portions in one embodiment. An application may store encrypted content on the non-protected portion of said memory. The decryption device may access the encrypted material, decrypt the material, and provide it to the renderer engine of a graphics engine. The graphics engine may then process the decrypted material using the protected portion of the memory. Only graphics devices can access the protected portion of the memory in at least one mode, preventing access by outside sources. In addition, the protected memory may be stolen memory that is not identified to the operating system, making that stolen memory inaccessible to applications running on the operating system.
摘要:
A method for delivering audio/video data through a hardware device using a software application comprises, at the hardware end, receiving an encrypted application key, an encrypted random session key, and encrypted audio/video data from the software. The hardware then decrypts the encrypted application key using a secret encryption key, decrypts the encrypted random session key using the application key, and decrypts the encrypted audio/video data using the random session key. The hardware may then deliver the unencrypted audio/video data by way of a display and speakers. The secret encryption key is securely embedded within the hardware device at an earlier point in time.
摘要:
An apparatus to facilitate compute optimization is disclosed. The apparatus includes a memory device including a first integrated circuit (IC) including a plurality of memory channels and a second IC including a plurality of processing units, each coupled to a memory channel in the plurality of memory channels.
摘要:
Described herein are technologies related to a ensuring that graphics commands and graphics context are offloading and scheduled for consumption as the commands and graphics context are sent from coherent to non-coherent memory/fabric in a “processor to processor” handoff or transaction.
摘要:
Methods and devices to augment volatile memory in a graphics subsystem with certain types of non-volatile memory are described. In one embodiment, includes storing one or more static or near-static graphics resources in a non-volatile random access memory (NVRAM). The NVRAM is directly accessible by a graphics processor using at least memory store and load commands. The method also includes a graphics processor executing a graphics application. The graphics processor sends a request using a memory load command for an address corresponding to at least one static or near-static graphics resources stored in the NVRAM. The method also includes directly loading the requested graphics resource from the NVRAM into a cache for the graphics processor in response to the memory load command.
摘要:
In some embodiments, the invention involves securing sensitive data from mal-ware on a computing platform and, more specifically, to utilizing virtualization technology and protected audio video path technologies to prohibit a user environment from directly accessing unencrypted sensitive data. In an embodiment a service operating system (SOS) accesses sensitive data requested by an application running in a user environment virtual machine, or a capability operating system (COS). The SOS application encrypts the sensitive data before passing the data to the COS. The COS makes requests directly to a graphics engine which decrypts the data before displaying the sensitive data on a display monitor. Other embodiments are described and claimed.
摘要:
The architecture and techniques described herein can improve system performance with respect to the following. Communication between two interdependent hardware engines, that are part of pipeline, such that the engines are synchronized to consume resources when the engines are done with the work. Reduction of the role of software/firmware from feeding each stage of the hardware pipeline when the previous stage of the pipeline has completed. Reduction in the memory allocation for software-initialized hardware descriptors to improve performance by reducing pipeline stalls due to software interaction.
摘要:
An apparatus, system, and method are disclosed. In one embodiment, the apparatus includes a virtualization engine on a computer platform. The virtualization engine can intercept multiple data transfer schedules from multiple virtual machines fetched from a memory by a physical Universal Serial Bus (USB) host controller on the computer platform. The virtualization engine also can merge the multiple fetched data transfer schedules into a merged data transfer schedule. The virtualization engine also can send the merged data transfer schedule to the physical USB host controller.
摘要:
An embodiment of the present invention is a technique to process faults in a direct memory access address translation. A register set stores global control or status information for fault processing of a fault generated by an input/output (I/O) transaction requested by an I/O device. An address translation structure translates a guest physical address to a host physical address. The guest physical address corresponds to the I/O transaction and is mapped to a domain. The address translation structure has at least an entry associated with the domain and domain-specific control information for the fault processing.