摘要:
Columns comprising a plurality of vertically aligned carbon nanotubes can be configured as electromechanical contact structures or probes. The columns can be grown on a sacrificial substrate and transferred to a product substrate, or the columns can be grown on the product substrate. The columns can be treated to enhance mechanical properties such as stiffness, electrical properties such as electrical conductivity, and/or physical contact characteristics. The columns can be mechanically tuned to have predetermined spring properties. The columns can be used as electromechanical probes, for example, to contact and test electronic devices such as semiconductor dies, and the columns can make unique marks on terminals of the electronic devices.
摘要:
A fuel cell comprises an anode, a cathode, and a proton exchange membrane. The anode and cathode can include a catalyst layer which includes a plurality of generally aligned carbon nanotubes. Methods of making a fuel cell are also disclosed.
摘要:
A fuel cell comprises an anode, a cathode, and a proton exchange membrane. The anode and cathode can include a catalyst layer which includes a plurality of generally aligned carbon nanotubes. Methods of making a fuel cell are also disclosed.
摘要:
Columns comprising a plurality of vertically aligned carbon nanotubes can be configured as electromechanical contact structures or probes. The columns can be grown on a sacrificial substrate and transferred to a product substrate, or the columns can be grown on the product substrate. The columns can be treated to enhance mechanical properties such as stiffness, electrical properties such as electrical conductivity, and/or physical contact characteristics. The columns can be mechanically tuned to have predetermined spring properties. The columns can be used as electromechanical probes, for example, to contact and test electronic devices such as semiconductor dies, and the columns can make unique marks on terminals of the electronic devices.
摘要:
Contacts of an electrical device can be made of carbon nanotube columns. Contact tips can be disposed at ends of the columns. The contact tips can be made of an electrically conductive paste applied to the ends of the columns and cured (e.g., hardened). The paste can be applied, cured, and/or otherwise treated to make the contact tips in desired shapes. The carbon nanotube columns can be encapsulated in an elastic material that can impart the dominant mechanical characteristics, such as spring characteristics, to the contacts. The contacts can be electrically conductive and can be utilized to make pressure-based electrical connections with electrical terminals or other contact structures of another device.
摘要:
Carbon nanotube columns each comprising carbon nanotubes can be utilized as electrically conductive contact probes. The columns can be grown, and parameters of a process for growing the columns can be varied while the columns grow to vary mechanical characteristics of the columns along the growth length of the columns. Metal can then be deposited inside and/or on the outside of the columns, which can enhance the electrical conductivity of the columns. The metalized columns can be coupled to terminals of a wiring substrate. Contact tips can be formed at or attached to ends of the columns. The wiring substrate can be combined with other electronic components to form an electrical apparatus in which the carbon nanotube columns can function as contact probes.
摘要:
Carbon nanotube columns each comprising carbon nanotubes can be utilized as electrically conductive contact probes. The columns can be grown, and parameters of a process for growing the columns can be varied while the columns grow to vary mechanical characteristics of the columns along the growth length of the columns. Metal can then be deposited inside and/or on the outside of the columns, which can enhance the electrical conductivity of the columns. The metalized columns can be coupled to terminals of a wiring substrate. Contact tips can be formed at or attached to ends of the columns. The wiring substrate can be combined with other electronic components to form an electrical apparatus in which the carbon nanotube columns can function as contact probes.
摘要:
Contacts of an electrical device can be made of carbon nanotube columns. Contact tips can be disposed at ends of the columns. The contact tips can be made of an electrically conductive paste applied to the ends of the columns and cured (e.g., hardened). The paste can be applied, cured, and/or otherwise treated to make the contact tips in desired shapes. The carbon nanotube columns can be encapsulated in an elastic material that can impart the dominant mechanical characteristics, such as spring characteristics, to the contacts. The contacts can be electrically conductive and can be utilized to make pressure-based electrical connections with electrical terminals or other contact structures of another device.
摘要:
A method of making carbon nanotube contact structures on an electronic device includes growing a plurality of carbon nanotube columns on a mandrel. Electrically-conductive adhesive is applied to ends of the columns distal from the mandrel, and the columns are transferred to the electronic device. An electrically-conductive material is deposited onto some or all of the columns. The mandrel can be reused to grow a second plurality of carbon nanotube columns.
摘要:
A technique for anchoring carbon nanotube columns to a substrate can include use of a filler material placed onto the surface of the substrate into area between the columns and surrounding a base portion of each of the columns.