摘要:
A memory cell device includes a semiconductor nanowire extending, at a first end thereof, from a substrate; the nanowire having a doping profile so as to define a field effect transistor (FET) adjacent the first end, the FET further including a gate electrode at least partially surrounding the nanowire, the doping profile further defining a p-n junction in series with the FET, the p-n junction adjacent a second end of the nanowire; and a phase change material at least partially surrounding the nanowire, at a location corresponding to the p-n junction.
摘要:
A memory cell device includes a semiconductor nanowire extending, at a first end thereof, from a substrate; the nanowire having a doping profile so as to define a field effect transistor (FET) adjacent the first end, the FET further including a gate electrode at least partially surrounding the nanowire, the doping profile further defining a p-n junction in series with the FET, the p-n junction adjacent a second end of the nanowire; and a phase change material at least partially surrounding the nanowire, at a location corresponding to the p-n junction.
摘要:
A memory cell device includes a semiconductor nanowire extending, at a first end thereof, from a substrate; the nanowire having a doping profile so as to define a field effect transistor (FET) adjacent the first end, the FET further including a gate electrode at least partially surrounding the nanowire, the doping profile further defining a p-n junction in series with the FET, the p-n junction adjacent a second end of the nanowire; and a phase change material at least partially surrounding the nanowire, at a location corresponding to the p-n junction.
摘要:
A memory cell device includes a semiconductor nanowire extending, at a first end thereof, from a substrate; the nanowire having a doping profile so as to define a field effect transistor (FET) adjacent the first end, the FET further including a gate electrode at least partially surrounding the nanowire, the doping profile further defining a p-n junction in series with the FET, the p-n junction adjacent a second end of the nanowire; and a phase change material at least partially surrounding the nanowire, at a location corresponding to the p-n junction.
摘要:
A transportable photovoltaic system includes a plurality of photovoltaic devices, a composite frame to which the plurality of photovoltaic devices are affixed, and a base structure to which the composite frame is movably attached through at least one variable-angle mount structure. The orientation of the frame and the light concentrating elements relative to the base structure can be altered employing the at least one variable-angle mount structure. The frame and the plurality of photovoltaic devices can be assembled prior to shipping, and the base structure can be manufactured on site. The transportable photovoltaic system is not affixed to ground or other fixture, but can be picked up at any time during the operational lifetime. The transportable photovoltaic system can be rapidly deployed with little or no site preparation requirement other than generally level ground, and can be retracted to a lower exposure position to avoid storm and/or hazardous conditions.
摘要:
A transportable photovoltaic system includes a plurality of photovoltaic devices, a composite frame to which the plurality of photovoltaic devices are affixed, and a base structure to which the composite frame is movably attached through at least one variable-angle mount structure. The orientation of the frame and the light concentrating elements relative to the base structure can be altered employing the at least one variable-angle mount structure. The frame and the plurality of photovoltaic devices can be assembled prior to shipping, and the base structure can be manufactured on site. The transportable photovoltaic system is not affixed to ground or other fixture, but can be picked up at any time during the operational lifetime. The transportable photovoltaic system can be rapidly deployed with little or no site preparation requirement other than generally level ground, and can be retracted to a lower exposure position to avoid storm and/or hazardous conditions.
摘要:
Techniques for cooling concentrating solar collector systems are provided. In one aspect, an apparatus for cooling a photovoltaic cell includes a heat exchanger having a metal plate with a bend therein that positions a first surface of the metal plate at an angle of from about 100 degrees to about 150 degrees relative to a second surface of the metal plate, and a plurality of fins attached to a side of the metal plate opposite the first surface and the second surface; a vapor chamber extending along the first surface and the second surface of the metal plate, crossing the bend; and a cladding material between the vapor chamber and the heat exchanger, wherein the cladding material is configured to thermally couple the vapor chamber to the heat exchanger. A photovoltaic system and method for operating a photovoltaic system are also provided.
摘要:
A method of concentrating solar energy includes receiving solar energy through a surface of an optically clear shell, guiding the solar energy through a liquid contained in the optically clear shell, folding the solar energy back through the liquid toward a solar receiver, and shifting the solar receiver within the optically clear shell to track the sun, wherein the solar energy collected by the solar receiver is converted into electrical energy.
摘要:
Techniques for analyzing performance of solar panels and/or cells are provided. In one aspect, a method for analyzing an infrared thermal image taken using an infrared camera is provided. The method includes the following steps. The infrared thermal image is converted to temperature data. Individual elements are isolated in the infrared thermal image. The temperature data for each isolated element is tabulated. A performance status of each isolated element is determined based on the tabulated temperature data. The individual elements can include solar panels and/or solar cells. In another aspect, an infrared diagnostic system is provided. The infrared diagnostic system includes an infrared camera which can be remotely positioned relative to one or more elements to be imaged; and a computer configured to receive thermal images from the infrared camera, via a communication link, and analyze the thermal images.
摘要:
The invention is directed to a method of positioning nanoparticles on a patterned substrate. The method comprises providing a patterned substrate with selectively positioned recesses, and applying a solution or suspension of nanoparticles to the patterned substrate to form a wetted substrate. A wiper member is dragged across the surface of the wetted substrate to remove a portion of the applied nanoparticles from the wetted substrate, and leaving a substantial number of the remaining portion of the applied nanoparticles disposed in the selectively positioned recesses of the substrate. The invention is also directed to a method of making carbon nanotubes from the positioned nanoparticles.