Abstract:
A system includes an intake heater positioned in or proximate to an air intake of an engine, an aftertreatment system heater positioned downstream of the engine, and a controller coupled to the intake heater and the aftertreatment system heater. The controller is structured to operate the intake heater to heat air entering the engine for a predefined time period. The controller is structured to determine, based on information indicative of a temperature regarding an exhaust aftertreatment system, that the temperature regarding the exhaust aftertreatment system is below a predefined temperature threshold. The controller is structured to continue operating the intake heater after the predefined time period responsive to the temperature regarding the exhaust aftertreatment system being below the predefined temperature threshold.
Abstract:
A system and method of exhaust gas recirculation (EGR) in an internal combustion engine are provided. The EGR system includes a first EGR flow path and a second EGR flow path independent of the first EGR flow path that are each configured to recirculate high pressure exhaust from the exhaust system back to the engine intake system. The system includes a controller in operable communication with the EGR system configured to selectively control an amount of EGR flow through at least one of the first and second EGR flow paths.
Abstract:
A system includes a first heater positioned in or proximate to an exhaust aftertreatment system in exhaust gas-receiving communication with an engine, a second heater positioned downstream of the first heater, and a controller coupled to the first and second heaters. The controller is structured to determine, based on information indicative of a temperature regarding the exhaust aftertreatment system, that the temperature is below a temperature threshold; receive information regarding a characteristic of a battery coupled to the first heater and the second heater; control the temperature regarding the exhaust aftertreatment system without using the first or second heaters in response to determining that the characteristic of the battery is below a first threshold; and control a temperature regarding the exhaust aftertreatment system using the first heater in response to determining that the characteristic of the battery is above the first threshold but below a second threshold.
Abstract:
A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.
Abstract:
A system includes a first heater positioned in or proximate to an exhaust aftertreatment system in exhaust gas-receiving communication with an engine, a second heater positioned downstream of the first heater, and a controller coupled to the first and second heaters. The controller is structured to activate the second heater in response to determining that a compound deposit is likely present.
Abstract:
A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.
Abstract:
A recycling loop configuration of an exhaust gas aftertreatment system decreases a level of system-out NOx emissions of an engine. An apparatus including the configuration has an exhaust gas recycling system having a closed gas recycling loop system configured to heat gas circulating within the loop, and a blower for circulating gas within the loop. A method for operating the engine includes preheating at least one aftertreatment component of an exhaust gas aftertreatment system of the engine by exposing the component to heated gas circulating in a closed gas recycling loop.
Abstract:
A powertrain system includes an engine coupled to a turbocharger and a timer, a motor generator coupled to the engine and a battery, and a controller. The controller is structured to receive data indicative of a state of charge from the battery, determine whether the state of charge is at or below a high predefined threshold, modulate control on the engine and the timer in response to determining the state of charge is above the high predefined threshold, determine whether the state of charge is above a low predefined threshold in response to the state of charge being at or below the high predefined threshold, and modulate control of the engine and the timer in response to determining the state of charge is at or below the low predefined threshold.
Abstract:
A system and method of controlling operation of an internal combustion engine are provided. The method includes performing a cylinder deactivation operation while running the engine, selecting at least one of the plurality of temperature maintenance actions to increase an exhaust temperature, and performing at least one of the plurality of temperature maintenance actions effective to increase the exhaust temperature. The plurality of temperature maintenance actions may include one or more of a charge air cooler bypass operation, an EGR cooler bypass operation, an aftertreatment system heater operation, a turbocharger bypass operation, a turbocharger geometry adjustment operation, an intake air throttle adjustment operation, and a delayed injection timing operation, or combinations thereof.
Abstract:
A system, method, and apparatus for decreasing harmful emissions is provided. The system includes an aftertreatment system comprising an exhaust conduit that directs exhaust gas from an engine system; a heater coupled to the aftertreatment system and configured to provide heat; and a controller coupled to the heater. The controller is configured to: determine whether the engine system is idling; in response to determining that the engine system is idling, determine whether a conversion efficiency of the engine system is greater than a threshold value; in response to determining that the conversion efficiency is greater than the threshold value, determine whether a temperature regarding the aftertreatment system is greater than a threshold temperature; and in response to determining that the temperature of the aftertreatment system is greater than the threshold temperature, at least one of disable or partially disable the heater.