摘要:
Provided is a bimetallic tube for transport of hydrocarbon feedstocks in refinery process furnaces, and more particularly in furnace radiant coils, including: i) an outer tube layer being formed from carbon steels or low chromium steels comprising less than 15.0 wt. % Cr based on the total weight of the steel; ii) an inner tube layer being formed from an alumina forming bulk alloy including 5.0 to 10.0 wt. % of Al, 20.0 wt. % to 25.0 wt. % Cr, less than 0.4 wt. % Si, and at least 35.0 wt. % Fe with the balance being Ni, wherein the inner tube layer is formed plasma powder welding the alumina forming bulk alloy on the inner surface of the outer tube layer; and iii) an oxide layer formed on the surface of the inner tube layer, wherein the oxide layer is substantially comprised of alumina, chromia, silica, mullite, spinels, or mixtures thereof.
摘要:
The present invention is directed to a process for producing pearlite from an iron containing article comprising the steps of, (a) heating an iron containing article comprising at least 50 wt % iron for a time and at a temperature sufficient to convert at least a portion of said iron from a ferritic structure to an austenitic structure, (b) exposing said austenitic structure, for a time sufficient and at a temperature of about 727 to about 900° C., to a carbon supersaturated environment to diffuse carbon into said austenitic structure and (c) cooling said iron containing article to form a continuous pearlite structure.
摘要:
This disclosure relates to weldments useful as heat transfer tubes in refinery processes dealing with gas phase hydrocarbon process streams at high temperatures. This disclosure also relates to tubes that are useful in refinery processes dealing with gas phase hydrocarbon process streams at high temperatures. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the disclosure relate to refinery processes dealing with gas phase hydrocarbon process streams at high temperatures which include such weldments.
摘要:
In one aspect, the invention includes a heat stable, formed ceramic component that includes a multimodal grain distribution including (i) at least 50 wt % of coarse grains including stabilized zirconia, the coarse grains comprising a D50 grain size in the range of from 5 to 800 μm, based upon the total weight of the component; and (ii) at least 1 wt % of fine grains comprising a D50 average grain size not greater than one-fourth the D50 grain size of the coarse grain, dispersed within the coarse grains, based upon the total weight of the component; wherein after sintering, the component has porosity at ambient temperature in the range of from 5 to 45 vol. %, based on the formed volume of the component. In other embodiments, the invention includes a process for the manufacture of a hydrocarbon pyrolysis product from a hydrocarbon feed using a regenerative pyrolysis reactor system, comprising the steps of: (a) heating a pyrolysis reactor comprising a bi-modal stabilized zirconia ceramic component to a temperature of at least 1500° C. to create a heated reactive region, wherein after exposing the component to a temperature of at least 1500° C. for two hours the component has a bulk porosity measured at ambient temperature in the range of from 5 to 45 vol. %, based on the bulk volume of the component; (b) feeding a hydrocarbon feed to the heated pyrolysis reactor to pyrolyze the hydrocarbon feed and create a pyrolyzed hydrocarbon feed; and (c) quenching the pyrolyzed hydrocarbon feed to produce the hydrocarbon pyrolysis product.
摘要:
This disclosure relates to weldments useful as heat transfer tubes in refinery processes dealing with gas phase hydrocarbon process streams at high temperatures. This disclosure also relates to tubes that are useful in refinery processes dealing with gas phase hydrocarbon process streams at high temperatures. The weldments include a tubular member and at least one mixing element. The tubular member comprises an aluminum-containing alloy. The mixing element comprises an aluminum-containing alloy. The mixing element's aluminum-containing alloy can be the same as or different from the tubular member's aluminum-containing alloy. Other aspects of the disclosure relate to refinery processes dealing with gas phase hydrocarbon process streams at high temperatures which include such weldments.
摘要:
In one aspect, the invention includes a heat stable, formed ceramic component that includes a multimodal grain distribution including (i) at least 50 wt % of coarse grains including stabilized zirconia, the coarse grains comprising a D50 grain size in the range of from 5 to 800 μm, based upon the total weight of the component; and (ii) at least 1 wt % of fine grains comprising a D50 average grain size not greater than one-fourth the D50 grain size of the coarse grain, dispersed within the coarse grains, based upon the total weight of the component; wherein after sintering, the component has porosity at ambient temperature in the range of from 5 to 45 vol. %, based on the formed volume of the component. In other embodiments, the invention includes a process for the manufacture of a hydrocarbon pyrolysis product from a hydrocarbon feed using a regenerative pyrolysis reactor system, comprising the steps of: (a) heating a pyrolysis reactor comprising a bi-modal stabilized zirconia ceramic component to a temperature of at least 1500° C. to create a heated reactive region, wherein after exposing the component to a temperature of at least 1500° C. for two hours the component has a bulk porosity measured at ambient temperature in the range of from 5 to 45 vol. %, based on the bulk volume of the component; (b) feeding a hydrocarbon feed to the heated pyrolysis reactor to pyrolyze the hydrocarbon feed and create a pyrolyzed hydrocarbon feed; and (c) quenching the pyrolyzed hydrocarbon feed to produce the hydrocarbon pyrolysis product.
摘要:
In one aspect, the invention includes an apparatus for pyrolyzing a hydrocarbon feedstock in a regenerative pyrolysis reactor system, the apparatus comprising a regenerative pyrolysis reactor comprising a stabilized refractory grade zirconia in a reactive region of the reactor system. In another aspect, this invention includes a method for pyrolyzing a hydrocarbon feedstock using a reverse flow regenerative pyrolysis reactor comprising the steps of providing a reverse flow regenerative pyrolysis reactor including a stabilized refractory grade zirconia in a heated reaction zone of the reactor; and pyrolyzing a hydrocarbon feedstock within the reactive region.
摘要:
In one aspect, the invention includes an apparatus for pyrolyzing a hydrocarbon feedstock in a regenerative pyrolysis reactor system, the apparatus comprising a regenerative pyrolysis reactor comprising a stabilized refractory grade zirconia in a reactive region of the reactor system. In another aspect, this invention includes a method for pyrolyzing a hydrocarbon feedstock using a reverse flow regenerative pyrolysis reactor comprising the steps of providing a reverse flow regenerative pyrolysis reactor including a stabilized refractory grade zirconia in a heated reaction zone of the reactor; and pyrolyzing a hydrocarbon feedstock within the reactive region.
摘要:
A method for inhibiting metal dusting corrosion of surfaces exposed to supersaturated carbon environments comprising constructing said surfaces of, or coating said surfaces with a copper based alloy. The invention is also directed to a composition resistant to metal dusting.