摘要:
Systems and methodologies are disclosed for increasing the number of memory cells associated with a lithographic feature. The systems comprise memory elements that are formed on the sidewalls of the lithographic feature by employing various depositing and etching processes. The side wall memory cells can have a bit line of the wafer as the first electrode and operate with a second formed electrode to activate a portion of an organic matter that is formed there between.
摘要:
Systems and methods are disclosed for creating smooth surfaces for layers that are employed in memory cells and have previously been subject to a CMP process. The present invention employs various cycles of exposing the post CMP surface to inorganic and organic acids, as well as growing passive layers. The systems and methods may comprise an electroless feature for forming the passive layers.
摘要:
A method for filling an isolation trench structure during a semiconductor fabrication process is disclosed. The method includes a two-step deposition process that includes depositing a silicon-rich liner on the trench surface, and thereafter, filling the isolation trenches with an oxide utilizing a biased high density plasma deposition process. In a preferred embodiment, the silicon-rich liner is an in-situ HDP liner having a thickness of between 100 and 400 Angstroms, and preferably 200 Angstroms. Depositing a silicon-rich liner on the trench surface prior to depositing the high density plasma oxide eliminates the formation of defects at the surface of the isolation trench structure. Thus, the quality of the oxide fill is improved, as is yield and device performance.
摘要:
A method of manufacturing a surface mount device includes forming a plaque from a material, forming a plurality of conductive protrusions on a top surface and a bottom surface of the plaque, and applying a liquid encapsulant over at least a portion of the top surface and at least a portion of the bottom surface of the plaque. The liquid encapsulant is cured and when cured encapsulant has an oxygen permeability of less than about 0.4 cm3·mm/m2·atm·day. The assembly is cut to provide a plurality of components. After cutting, the top surface of each component includes at least one conductive protrusion, the bottom surface of each component includes at least one conductive protrusion, the top surface and the bottom surface of each component include the cured encapsulant, and a core of each component includes the material.
摘要:
An exemplary embodiment relates to a method for forming a metal oxide semiconductor field effect transistor (MOSFET). The method includes providing a substrate having a gate formed above the substrate and performing at least one of the following depositing steps: depositing a spacer layer and forming a spacer around a gate and gate insulator located above a layer of silicon above the substrate; depositing an etch stop layer above the spacer, the gate, and the layer of silicon; and depositing a dielectric layer above the etch stop layer. At least one of the depositing a spacer layer, depositing an etch stop layer, and depositing a dielectric layer comprises high compression deposition which increases in tensile strain in the layer of silicon.
摘要:
A method of protecting a SONOS flash memory cell from UV-induced charging, including fabricating a SONOS flash memory cell in a semiconductor device; and depositing over the SONOS flash memory cell at least one UV-protective layer, the UV-protective layer including a substantially UV-opaque material. In one embodiment, the device includes a substantially UV-opaque sub-layer of a contact cap layer or a substantially UV-opaque contact cap layer.
摘要:
An exemplary embodiment relates to a method for forming a metal oxide semiconductor field effect transistor (MOSFET). The method includes providing a substrate having a gate formed above the substrate and performing at least one of the following depositing steps: depositing a spacer layer and forming a spacer around a gate and gate insulator located above a layer of silicon above the substrate; depositing an etch stop layer above the spacer, the gate, and the layer of silicon; and depositing a dielectric layer above the etch stop layer. At least one of the depositing a spacer layer, depositing an etch stop layer, and depositing a dielectric layer comprises high compression deposition which increases in tensile strain in the layer of silicon.
摘要:
According to one exemplary embodiment, a structure comprises a substrate. The structure further comprises at least one memory cell situated on the substrate. The at least one memory cell may be, for example, a flash memory cell, such as a SONOS flash memory cell and may include a gate situated over an ONO stack. The structure further comprises an interlayer dielectric layer situated over the at least one memory cell and over the substrate. According to this exemplary embodiment, the structure further comprises a UV radiation blocking layer situated directly over the interlayer dielectric layer, where the UV radiation blocking layer is selected from the group consisting of silicon-rich oxide and silicon-rich nitride. The UV radiation blocking layer may have a thickness of between approximately 1500.0 Angstroms and approximately 2000.0 Angstroms, for example.
摘要:
A MOSFET gate or a MOSFET source or drain region comprises silicon germanium or polycrystalline silicon germanium. Silicidation with nickel is performed to form a nickel germanosilicide that preferably comprises the monosilicide phase of nickel silicide. The inclusion of germanium in the silicide provides a wider temperature range within which the monosilicide phase may be formed, while essentially preserving the superior sheet resistance exhibited by nickel monosilicide. As a result, the nickel germanosilicide is capable of withstanding greater temperatures during subsequent processing than nickel monosilicide, yet provides approximately the same sheet resistance and other beneficial properties as nickel monosilicide.
摘要:
A method of protecting a SONOS flash memory cell from UV-induced charging, including fabricating a SONOS flash memory cell in a semiconductor device; and depositing over the SONOS flash memory cell at least one UV-protective layer, the UV-protective layer including a substantially UV-opaque material. A SONOS flash memory device, including a SONOS flash memory cell; and at least one UV-protective layer, in which the UV-protective layer comprises a substantially UV-opaque material, is provided. In one embodiment, the device includes a substantially UV-opaque contact cap layer.