摘要:
A non-volatile static random access memory device configured by adding a floating gate type metal oxide semiconductor device to an SRAM including a pair of access elements respectively switched on and off in accordance with the state of a signal on an address line and adapted to establish a data transfer path between memory cell and associated negative and positive data lines, and a pair of inverters respectively coupled to the access elements, thereby allowing the SRAM to exhibit non-volatile memory characteristics. The floating gate type MOS device has a silicon substrate, a tunneling oxide film formed over the silicon substrate, a floating gate formed on the tunneling oxide film, an oxide film formed over the floating gate, a control gate formed over the oxide film, and a source and a drain respectively formed in an upper surface of the silicon substrate at both sides of the control gate. The source and drain of the floating gate type MOS device are electrically connected at the source and drain thereof to the input terminals of the inverters of the SRAM, respectively, so that it provides non-volatile memory characteristics to the SRAM by virtue of a difference in threshold voltage caused by charge stored in the floating gate thereof. This non-volatile SRAM device has a high density while exhibiting high-speed operation characteristics.
摘要:
A NAND includes a device isolation pattern disposed in a region of a substrate defining a plurality of active regions. Memory transistors having memory gate patterns, constituting a cell string, cross the plurality of active regions. Select transistors are disposed over the memory transistors, and lower plugs are disposed on each side of the cell string to electrically connect the plurality of active regions on both sides of the cell string and the select transistors.
摘要:
NAND-type flash memory devices and methods of fabricating the same are provided. The NAND-type flash memory device includes a plurality of isolation layers running parallel with each other, which are formed at predetermined regions of a semiconductor substrate. This device also includes a string selection line pattern, a plurality of word line patterns and a ground selection line pattern which cross over the isolation layers and active regions between the isolation layers. Source regions are formed in the active regions adjacent to the ground selection line patterns and opposite the string selection line pattern. The source regions and the isolation layers between the source regions are covered with a common source line running parallel with the ground selection line pattern.
摘要:
A non-volatile memory device and fabrication method thereof are provided. A floating region is formed on an active region on a substrate. Trenches define the active region. The floating region is made of an ONO layer. A gate electrode is formed on the floating region. A mask is formed on the gate electrode. A thermal oxidation is performed to make a sidewall oxide and a trench oxide on the sidewall of the gate electrode and the trench, respectively. As a result, the widths of the gate electrode and the active region become less than the width of the floating region, thereby forming protrusions at ends of the floating region. Isolation regions are formed in the trenches and include the sidewall oxide and the trench oxide. The isolation regions surround the protrusions. As a result, electric field induced on the sidewall of the floating region is decreased. Moreover, the thermal oxidation cures any damage to the sidewalls of the floating region. Accordingly, leakage current can be substantially suppressed at the boundary region between the isolation region and the floating region.
摘要:
A method of forming a non-volatile memory having a floating trap-type device is disclosed in the present invention. In the method, a relatively thick thermal oxide layer is formed at a semiconductor substrate and patterned to leave a thick thermal oxide pattern at a high-voltage region (a high-voltage region defining step). An oxide-nitride-oxide (ONO) layer is formed over substantially the entire surface (the substantial surface) of the semiconductor substrate and patterned to leave an ONO pattern at a cell memory region (a cell memory region defining step). After the high-voltage region defining step and the cell memory region defining step, a thermal oxidizing process is performed with respect to the semiconductor substrate where a low-voltage region is exposed, thereby forming a relatively thin gate insulation layer for a low-voltage type device (a low-voltage region defining region).
摘要:
The present invention provides a highly reliable polycrystal silicon thin film transistor with N2O plasma oxide having an excellent leakage current characteristics comparable to the thermal oxide film formed on the crystalline silicon. Also, the present invention provides a method of fabricating EEPROM or flash memory using N2O plasma oxide as a tunnel oxide, and N2O plasma oxide film as an interpoly dielectric between the floating gate and the control gate.
摘要:
An interconnection structure for a semiconductor device includes an inter-level insulation layer disposed on a semiconductor substrate. First contact constructions penetrate the inter-level insulation layer. Second contact constructions penetrate the inter-level insulation layer. Metal interconnections connect the first contact constructions to the second contact constructions on the inter-level insulation layer. The first contact constructions include first and second plugs stacked in sequence and the second contact constructions include the second plug.
摘要:
A method of forming a memory device, where a first insulator layer and a charge trapping layer may be formed on a substrate, and at least one of the first insulator layer and charge trapping layer may be patterned to form patterned areas. A second insulation layer and a conductive layer may be formed on the patterned areas, and one or more of the conductive layer, second insulator layer, charge trapping layer and first insulator layer may be patterned to form a string selection line, ground selection line, a plurality of word lines between the string selection and ground selection lines on the substrate, a low voltage gate electrode, and a plurality of insulators of varying thickness. The formed memory device may be a NAND-type non-volatile memory device having a SONOS gate structure, for example.
摘要:
A nonvolatile memory device includes a semiconductor substrate, a device isolation layer, a tunnel insulation layer, a floating gate, a buried floating gate, and a control gate. A trench is in the substrate that defines an active region of the substrate adjacent to the trench. A device isolation layer is on the substrate along the trench. A tunnel insulation layer is on the active region of the substrate. A floating gate is on the tunnel insulation layer opposite to the active region of the substrate. A buried floating gate is on the device isolation layer in the trench. An intergate dielectric layer is on and extends across the floating gate and the buried floating gate. A control gate is on the intergate dielectric layer and extends across the floating gate and the buried floating gate.
摘要:
Provided are semiconductor devices and methods of fabricating the same. A semiconductor device may include a semiconductor substrate with a device isolation layer defining HVE and HVD active regions. Gate insulation layer patterns may be disposed on the HVE and HVD active regions. Gate electrodes may be disposed on the gate insulation layer patterns to intersect the HVE and HVD active regions and the device isolation layer. An ion implantation layer may be disposed on the semiconductor substrate under the gate electrode of the HVD active region, spaced apart from the device isolation layer, and serves to adjust a threshold voltage.