摘要:
A field effect transistor includes a metal carbide source portion, a metal carbide drain portion, an insulating carbon portion separating the metal carbide source portion from the metal carbide portion, a nanostructure formed over the insulating and carbon portion and connecting the metal carbide source portion to the metal carbide drain portion, and a gate stack formed on over at least a portion of the insulating carbon portion and at least a portion of the nanostructure.
摘要:
A field effect transistor includes a metal carbide source portion, a metal carbide drain portion, an insulating carbon portion separating the metal carbide source portion from the metal carbide portion, a nanostructure formed over the insulating and carbon portion and connecting the metal carbide source portion to the metal carbide drain portion, and a gate stack formed on over at least a portion of the insulating carbon portion and at least a portion of the nanostructure.
摘要:
A field effect transistor includes a metal carbide source portion, a metal carbide drain portion, an insulating carbon portion separating the metal carbide source portion from the metal carbide portion, a nanostructure formed over the insulating and carbon portion and connecting the metal carbide source portion to the metal carbide drain portion, and a gate stack formed on over at least a portion of the insulating carbon portion and at least a portion of the nanostructure.
摘要:
A field effect transistor includes a metal carbide source portion, a metal carbide drain portion, an insulating carbon portion separating the metal carbide source portion from the metal carbide portion, a nanostructure formed over the insulating and carbon portion and connecting the metal carbide source portion to the metal carbide drain portion, and a gate stack formed on over at least a portion of the insulating carbon portion and at least a portion of the nanostructure.
摘要:
An integrated ferroelectric/CMOS structure which comprises at least a ferroelectric material, a pair of electrodes in contact with opposite surfaces of the ferroelectric material, where the electrodes do not decompose at deposition or annealing, and an oxygen source layer in contact with at least one of said electrodes, said oxygen source layer being a metal oxide which at least partially decomposes during deposition and/or subsequent processing is provided as well as a method of fabricating the same.
摘要:
A multilayer structure having an oxygen or dopant diffusion barrier fabricated of an electrically conductive, thermally stable material of refractory metal-silicon-nitrogen which is resistant to oxidation, prevents out-diffusion of dopants from silicon and has a wide process window wherein the refractory metal is selected from Ta, W, Nb, V, Ti, Zr, Hf, Cr and Mo.
摘要:
An integrated ferroelectric/CMOS structure which comprises at least a ferroelectric material, a pair of electrodes in contact with opposite surfaces of the ferroelectric material, where the electrodes do not decompose at deposition or annealing, and an oxygen source layer in contact with at least one of said electrodes, said oxygen source layer being a metal oxide which at least partially decomposes during deposition and/or subsequent processing is provided as well as a method of fabricating the same.
摘要:
The use of a bi-layer thin film structure consisting of aluminum or aluminide on a refractory metal layer as a diffusion barrier to oxygen penetration at high temperatures for preventing the electrical and mechanical degradation of the refractory metal for use in applications such as a capacitor electrode for high dielectric constant materials.
摘要:
The use of a bi-layer thin film structure consisting of aluminum or aluminide on a refractory metal layer as a diffusion barrier to oxygen penetration at high temperatures for preventing the electrical and mechanical degradation of the refractory metal for use in applications such as a capacitor electrode for high dielectric constant materials.
摘要:
A multilayer structure having an oxygen or dopant diffusion barrier fabricated of an electrically conductive, thermally stable material of refractory metal-silicon-nitrogen which is resistant to oxidation, prevents out-diffusion of dopants from silicon and has a wide process window wherein the refractory metal is selected from Ta, W, Nb, V, Ti, Zr, Hf, Cr and Mo.