Abstract:
The disclosed method relates to manufacturing a heat exchanger which causes no brazing defects, and a heat exchanger manufactured by the method. The method relates to manufacturing a heat exchanger having an aluminum alloy tube defining a cooling-medium flowing passage and a copper alloy tube defining a water flowing passage, wherein a heat exchange is carried out between a cooling medium flowing through the cooling-medium flowing passage and water flowing through the water flowing passage. The aluminum alloy tube and the copper alloy tube are brazed to each other at a temperature of less than 548° C.
Abstract:
There is provided a heat exchanger and a fin material for the heat exchanger that can suppress occurrence of hollow corrosion in a fin and hold cooling performance for a long period of time under a high corrosion environment. The heat exchanger includes an aluminum tube through which a working fluid circulates and an aluminum fin which is bonded to the tube. The fin has a region B around a grain boundary, and a region A around the region B. In the region B, 5.0×104 pieces/mm2 less of Al—Fe—Mn—Si based intermetallic compound, each of which has equivalent circle diameters of 0.1 to 2.5 μm, are present. In the region A, 5.0×104 pieces/mm2 to 1.0×107 pieces/mm2 of Al—Fe—Mn—Si based intermetallic compound, each of which has equivalent circle diameters of 0.1 to 2.5 μm, are present.
Abstract:
Disclosed is an aluminum alloy material for a heat exchanger fin, the aluminum alloy material containing Si: 1.0% to 5.0% by mass, Fe: 0.1% to 2.0% by mass, and Mn: 0.1% to 2.0% by mass with balance being Al and inevitable impurities, wherein 250 pieces/mm2 or more to 7×104 pieces/mm2 or less of Si-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material; and wherein 10 pieces/mm2 or more and 1000 pieces/mm2 or less of the Al—Fe—Mn—Si-based intermetallic compounds having equivalent circle diameters of more than 5 μm are present in a cross-section of the aluminum alloy material. The aluminum alloy material may further contain one or more additive elements of Mg, Cu, Zn, In, Sn, Ti, V, Zr, Cr, Ni, Be, Sr, Bi, Na, and Ca.
Abstract:
An aluminum alloy material contains Si: 1.0 mass % to 5.0 mass % and Fe: 0.01 mass % to 2.0 mass % with balance being Al and inevitable impurities, wherein 250 pcs/mm2 or more to 7×105 pcs/mm2 or less of Si-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material, while 100 pcs/mm2 to 7×105 pcs/mm2 of Al-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material. An aluminum alloy structure is manufactured by bonding two or more members in vacuum or a non-oxidizing atmosphere at temperature at which a ratio of a mass of a liquid phase generated in the aluminum alloy material to a total mass of the aluminum alloy material is 5% or more and 35% or less.
Abstract translation:铝合金材料含有Si:1.0质量%至5.0质量%,Fe:0.01质量%至2.0质量%,余量为Al和不可避免的杂质,其中250个/ mm 2以上至7×105个/ mm 2以下的Si 在铝合金材料的截面中存在等效圆直径为0.5〜5μm的金属间化合物颗粒,而具有当量圆直径的100个/ mm 2至7×105个/ mm 2的Al基金属间化合物颗粒 在铝合金材料的横截面中存在0.5-5μm。 在铝合金材料中产生的液相的质量比与铝合金材料的总质量的比率为5的温度下,在真空或非氧化性气氛中接合两个以上的构件,制造铝合金结构体 %以上35%以下。
Abstract:
An aluminum alloy material contains Si: 1.0 mass % to 5.0 mass % and Fe: 0.01 mass % to 2.0 mass % with balance being Al and inevitable impurities, wherein 250 pcs/mm2 or more to 7×105 pcs/mm2 or less of Si-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material, while 100 pcs/mm2 to 7×105 pcs/mm2 of Al-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material. An aluminum alloy structure is manufactured by bonding two or more members in vacuum or a non-oxidizing atmosphere at temperature at which a ratio of a mass of a liquid phase generated in the aluminum alloy material to a total mass of the aluminum alloy material is 5% or more and 35% or less.
Abstract translation:铝合金材料含有Si:1.0质量%至5.0质量%,Fe:0.01质量%至2.0质量%,余量为Al和不可避免的杂质,其中250个/ mm 2以上至7×105个/ mm 2以下的Si 在铝合金材料的截面中存在等效圆直径为0.5〜5μm的金属间化合物颗粒,而具有当量圆直径的100个/ mm 2至7×105个/ mm 2的Al基金属间化合物颗粒 在铝合金材料的横截面中存在0.5-5μm。 在铝合金材料中产生的液相的质量比与铝合金材料的总质量的比率为5的温度下,在真空或非氧化性气氛中接合两个以上的构件,制造铝合金结构体 %以上35%以下。
Abstract:
The metal forming method includes deforming a member to be formed (2) that includes a second metal and that has been heated and bringing the member into contact with a member to be bonded (3) that includes a first metal and that has been heated, in which the temperature of the member to be bonded (3) is a temperature at which a liquid phase ratio in the member to be bonded (3) is from 5 to 35%.
Abstract:
A welded joint comprising an aluminum-based base material comprising an aluminum alloy or pure aluminum and a copper-based base material comprising a copper alloy or pure copper joined by a weld metal portion is provided. The weld metal portion contains copper in ranges of less than 75% by mass and silicon in ranges of less than 13% by mass and has a higher content of copper and silicon than the aluminum-based base material.
Abstract:
Aluminum alloy material containing Si: 1.0 to 5.0 mass % and Fe: 0.01 to 2.0 mass % with balance being Al and inevitable impurities, wherein 250 pcs/mm2 or more to 7×105 pcs/mm2 or less of Si-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material, while 100 pcs/mm2 or more to 7×105 pcs/mm2 or less of Al-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 μm are present in a cross-section of the aluminum alloy material. An aluminum alloy structure is manufactured by bonding two or more members in vacuum or a non-oxidizing atmosphere at temperature at which a ratio of a mass of a liquid phase generated in the aluminum alloy material to a total mass of the aluminum alloy material is 5% or more and 35% or less.
Abstract:
The metal forming method includes deforming a member to be formed (2) that includes a second metal and that has been heated and bringing the member into contact with a member to be bonded (3) that includes a first metal and that has been heated, in which the temperature of the member to be bonded (3) is a temperature at which a liquid phase percentage in the member to be bonded (3) is from 5 to 35%.
Abstract:
This invention provides an aluminum alloy material capable of being thermally bonded in a single layer without using a bonding agent, such as a brazing or welding filler metal. This invention also provides a bonding method for the aluminum alloy material, and an aluminum bonded body using the aluminum alloy material. The aluminum alloy material is made of an aluminum alloy containing Si: 1.0 to 5.0 mass % and Fe: 0.01 to 2.0 mass % with the balance Al and inevitable impurities. The aluminum alloy material contains 10 to 1×104 pieces/μm3 of Al-based intermetallic compounds having equivalent circle diameters of 0.01 to 0.5 μm and 200 pieces/mm2 or less of Si-based intermetallic compounds having equivalent circle diameters of 5.0 to 10 μm.
Abstract translation:本发明提供一种铝合金材料,其能够在不使用诸如钎焊或焊接填充金属的粘合剂的情况下以单层热结合。 本发明还提供一种铝合金材料的接合方法和使用该铝合金材料的铝粘合体。 该铝合金材料由含有Si:1.0〜5.0质量%,Fe:0.01〜2.0质量%的铝合金构成,余量为Al和不可避免的杂质。 铝合金材料含有10〜1×104个/μm3的当量圆直径为0.01〜0.5μm的Al系金属间化合物和200个/ mm 2以下的具有当量圆直径为5.0〜10μm的Si系金属间化合物 。