Abstract:
A filler-containing film has a structure in which fillers are held in a binder resin layer. The average particle diameter of the fillers is 1 to 50 μm, the total thickness of the resin layer is 0.5 times or more and 2 times or less the average particle diameter of the fillers, and the ratio Lq/Lp of, relative to the minimum inter-filler distance Lp at one end of the filler-containing film in a long-side direction, a minimum inter-filler distance Lq at the other end at least 5 m away from the one end in the film long-side direction is 1.2 or less. The fillers are preferably arranged in a lattice form.
Abstract:
An anisotropic conductive film includes an insulating adhesive layer and conductive particles disposed thereon. Arrangement axes of the conductive particles having a particle pitch extend in a widthwise direction of the film, and the axes are sequentially arranged with an axis pitch in a lengthwise direction of the film. The particle pitch, axis pitch of the axes, and an angle θ of the axes relative the widthwise direction of the film are determined according to external shapes of terminals so 3 to 40 conductive particles are present on each terminal when a terminal arrangement region of an electronic component is superimposed on the film so a lengthwise direction of each terminal is aligned with the widthwise direction of the film. By using the film, stable connection reliability is obtained and an excessive increase in the density of the conductive particles is suppressed even in the connection of fine pitches.
Abstract:
An anisotropic electrically conductive film that is suitable for use in fine-pitch FOG connections and COG connections and that also can reduce increases in production costs associated with increasing the electrically conductive particle density. The anisotropic electrically conductive film includes an electrically insulating adhesive layer and electrically conductive particles disposed within the electrically insulating adhesive layer. The anisotropic electrically conductive film has electrically conductive particle disposition regions that are disposed in a manner corresponding to the arrangement of terminals of electronic components to be connected. The electrically conductive particle disposition regions are formed periodically in the longitudinal direction of the anisotropic electrically conductive film. The anisotropic electrically conductive film also has buffer regions in which no electrically conductive particles are disposed that are formed between adjacent electrically conductive particle disposition regions for connection.
Abstract:
A radical polymerizable adhesive composition contains a radical polymerizable compound, a thermal-radical polymerization initiator, and a photoacid generator, but contains no cationic polymerizable compound that undergoes cationic polymerization initiated by an acid generated by the photoacid generator. The photoacid generator has the property of accelerating the thermal-radical polymerization reaction of the radical polymerizable adhesive composition. The thermal-radical polymerization initiator is an organic peroxide, and the photoacid generator is a sulfonium salt, an iodonium salt, or an iron-arene complex.
Abstract:
A filler-containing film has a structure in which fillers are held in a binder resin layer. The average particle diameter of the fillers is 1 to 50 μm, the total thickness of the resin layer is 0.5 times or more and 2 times or less the average particle diameter of the fillers, and the ratio Lq/Lp of, relative to the minimum inter-filler distance Lp at one end of the filler-containing film in a long-side direction, a minimum inter-filler distance Lq at the other end at least 5 m away from the one end in the film long-side direction is 1.2 or less. The fillers are preferably arranged in a lattice form.
Abstract:
A conductive particle-disposed film of the present invention useful for a test probe unit for a continuity test of a fine-pitch continuity test object such as a semiconductor device is configured so that conductive particles are disposed in the surface direction of the elastomer film. The thickness of the elastomer film approximately coincides with the average particle diameter of the conductive particles. Ends of the conductive particles are positioned in the vicinity of respective outermost faces of both surfaces of the elastomer film. The same or different conductive particle-disposed films may be layered. A pressure-sensitive adhesive layer may be formed on at least one surface of the conductive particle-disposed film.
Abstract:
A cationically polymerizable anisotropic conductive film is provided. The cationically polymerizable anisotropic conductive film includes an alicyclic epoxy compound and achieves storage life property better than known anisotropic conductive films while ensuring curing temperature and connection reliability equivalent to known anisotropic conductive films. The anisotropic conductive film contains a binder composition containing a film forming component and a cationically polymerizable component, a cationic polymerization initiator, and conductive particles. The anisotropic conductive film contains a quaternary ammonium salt-based thermal acid generator as a cationic polymerization initiator and an alicyclic epoxy compound and a low polarity oxetane compound as a cationically polymerizable component.