摘要:
An image sensor includes a plurality of pixels disposed in an array, each pixel comprising a first region and a second region, the first region and the second region separated from each other in a semiconductor layer, and doped with impurities having different conductivities from each other, a photoelectric conversion region formed between the first and second regions, and at least one metal nanodot that focuses an incident light onto the photoelectric conversion region.
摘要:
An image sensor includes a plurality of unit pixels arranged in an array. Each unit pixel includes a plurality of sub-pixels configured to be irradiated by light having the same wavelength. Each sub-pixel includes a plurality of floating body transistors. Each floating body transistor includes a source region, a drain region, a floating body region between the source region and the drain region, and a gate electrode formed on the floating body region.
摘要:
An image sensor includes a plurality of unit pixels arranged in an array. Each unit pixel includes a plurality of sub-pixels configured to be irradiated by light having the same wavelength. Each sub-pixel includes a plurality of floating body transistors. Each floating body transistor includes a source region, a drain region, a floating body region between the source region and the drain region, and a gate electrode formed on the floating body region.
摘要:
An image sensor includes a plurality of pixels disposed in an array, each pixel comprising a first region and a second region, the first region and the second region separated from each other in a semiconductor layer, and doped with impurities having different conductivities from each other, a photoelectric conversion region formed between the first and second regions, and at least one metal nanodot that focuses an incident light onto the photoelectric conversion region.
摘要:
A multi-port light source of a photonic integrated circuit (PIC) may include a light emission portion for generating light; and a plurality of waveguides on opposite sides of the light emission portion to guide the light. A multi-port light source of a photonic integrated circuit (PIC) may include a first layer including a first pattern and a second pattern that are different from each other; an insulating layer on at least a region of the first layer; an active layer on at least a region of the insulating layer; and a reflective layer on the active layer.
摘要:
A multi-chip having an optical interconnection unit is provided. The multi-chip having an optical interconnection unit includes a plurality of silicon chips sequentially stacked, a plurality of optical device arrays on a side of each of the plurality of the silicon chips such that the optical device arrays correspond to each other and a wiring electrically connecting the silicon chip and the optical device array attached to a side of the silicon chip, wherein the corresponding optical device arrays forms an optical connection unit by transmitting and receiving an optical signal between the corresponding optical device arrays in different layers. Each of the optical device arrays includes at least one of a light emitting device and a light receiving device.
摘要:
Example embodiments are directed to light-emitting devices (LEDs) and methods of manufacturing the same. The LED includes a first semiconductor layer; a second semiconductor layer; an active layer formed between the first and second semiconductor layers; and an emission pattern layer including a plurality of layers on the first semiconductor layer, the emission pattern including an emission pattern for externally emitting light generated from the active layer.
摘要:
A light emitting device may include a substrate, an n-type clad layer, an active layer, and a p-type clad layer. A concave-convex pattern having a plurality of grooves and a mesa between each of the plurality of grooves may be formed on the substrate, and a reflective layer may be formed on the surfaces of the plurality of grooves or the mesa between each of the plurality of grooves. Therefore, light generated in the active layer may be reflected by the reflective layer, and extracted to an external location.
摘要:
Example embodiments are directed to a polarized light emitting diode and method of forming the same. The polarized light emitting diode may include a support layer, a semiconductor layer structure, and/or a polarization control layer. The semiconductor layer structure may be formed on the support layer and may include a light-emitting layer. The polarization control layer may be formed on the semiconductor layer structure and may include a plurality of metal nanowires. The polarized light emitting diode may be configured to control the polarization of emitted light. The method of forming a polarized light emitting diode may include forming on a substrate a semiconductor layer structure with a light emitting layer. A reflecting layer may be formed on the semiconductor layer structure with an attached support layer. The substrate may be removed from the semiconductor layer structure and a polarization control layer including metal nanowires may be formed on the semiconductor layer structure.
摘要:
A semiconductor light emitting device having a multiple pattern structure greatly increases light extraction efficiency. The semiconductor light emitting device includes a substrate and a semiconductor layer, an active layer, and an electrode layer formed on the substrate, a first pattern defining a first corrugated structure between the substrate and the semiconductor layer, and a second pattern defining a second corrugated structure on the first corrugated structure of the first pattern.