Abstract:
Methods and apparatus for enhanced control, monitoring and recording of incoming chemical and power use, and emissions of electronic device manufacturing systems are provided. In some embodiments, integrated sub-fab system systems may monitor the energy usage of the sub-fab equipment. The tool can enter many different depths of energy savings modes such as idle (shallow energy savings where production equipment can recover to normal production with no quality or throughput impact in seconds), sleep (deeper energy savings where production equipment can recover in minutes), or hibernate (where production equipment may require hours to recover not to have impact on quality, or throughput) for the system. In some embodiments, the system may monitor and display all gas emissions in a sub-fab as well as the Semi S23 method reporting of CO2 equivalent emission. The system may monitor effluent process gases and energy use from the process tool and sub-fab equipment.
Abstract:
A thermal reactor for use during the abatement of a semiconductor manufacturing process is provided, including a thermal reaction unit having: an interior porous wall that defines a central chamber, the interior porous wall formed from a plurality of stacked porous sections; at least one gas inlet in fluid communication with the central chamber and adapted to introduce gaseous waste stream to the central chamber; a thermal mechanism positioned within the central chamber and adapted to decompose the gaseous waste stream within the central chamber, thereby forming reaction products; and a fluid delivery system adapted to provide a fluid to the central chamber through the interior porous wall at a sufficient force to reduce deposition of reaction products on an inner surface of the interior porous wall of the central chamber; wherein at least one of the porous sections has one or more of: a property that varies within the porous section; and a property that differs from a property of at least one other porous section of the interior porous wall.
Abstract:
Methods and apparatus for recovering heat from disposed effluents are disclosed herein. In some embodiments, an apparatus may include a first process chamber configured for gaseous or liquid processes; a second process chamber configured for liquid processes; and a heat pump having a compressor and a first heat exchanger, wherein the compressor is configured to use a first effluent exhausted from the first process chamber and wherein the first heat exchanger having first and second sides configured to transfer heat therebetween, wherein the first side is configured to flow a liquid reagent therethrough and into the second process chamber, and wherein the second side is configured to flow the pressurized first effluent from the first process chamber therethrough. In some embodiments, a heater may be disposed between the heat pump and the second process chamber to further heat the liquid reagent prior to entering the second process chamber.
Abstract:
In some aspects, an apparatus for abating effluent from an electronic device manufacturing process tool is provided, including: a reaction chamber adapted to receive an effluent; and a reagent heating apparatus in fluid connection with the reaction chamber; wherein the reagent heating apparatus is adapted to heat a reagent and to introduce the heated reagent into a heated reagent reaction zone of the reaction chamber; and wherein the reaction chamber is further adapted to mix the effluent and the heated reagent in the heated reagent reaction zone. Other apparatus and methods are disclosed.
Abstract:
The present invention provides systems, methods, and apparatus for abating effluent from an electronic device manufacturing system using cogeneration. The invention includes a pump adapted to couple to a processing chamber and adapted to draw effluent from the processing chamber; a reaction chamber coupled to the pump and adapted to receive the effluent from the pump; and a turbine coupled to the reaction chamber and adapted to be driven by combustion gases from the reaction chamber. The turbine is adapted to generate power which is applied to operate the pump. Numerous additional aspects are disclosed.
Abstract:
In accordance with the present invention, a polishing pad useful for polishing a semiconductor-comprising substrate is disclosed. The polishing pad is constructed to include conduits which pass through at least a portion of and preferably through the entire thickness of the polishing pad. The conduits, preferably tubulars, are constructed from a first material which is different from a second material used as a support matrix. The conduits are positioned within the support matrix such that the longitudinal centerline of the conduit forms an angle ranging from about 60.degree. to about 120.degree. with the working surface of the polishing pad. One preferred method of fabrication the polishing pad is pultrusion, where the tubulars are pulled through a resin bath to apply a coating of resin and then through a series of dies in which the resin is cured to provide a support matrix around the tubulars. The composite of tubulars and surrounding matrix, which Would typically be cylindrical in form with the tubulars perpendicular to the end faces of the cylinder, is then sliced into polishing pads of the desired thickness.A second method of forming the polishing pad is by casting or injection molding into a mold which has fibers or hollow fibers in place within the mold at the position in which an opening through the polishing pad matrix is desired. After the matrix has been cast or molded, the fibers are removed to create the openings through the matrix, or the hollow fibers are left in place to provide a conduit lining within the matrix material.
Abstract:
A system for treating flammable effluent gas is provided. The system includes an exhaust conduit to carry the flammable effluent gas to an abatement unit, a control system coupled to the abatement unit to determine an operating parameter of the abatement unit, a bypass valve coupled to the exhaust conduit which is an operative responsive to the monitoring system, and a source of second gas to be mixed with the effluent gas diverted from the abatement unit when the bypass valve is operating in a bypass mode to provide a mixed gas having a flammability lower than the effluent gas. Methods of the invention as well as numerous other aspects are provided.
Abstract:
The present invention relates to a thermal reactor apparatus used to treat industrial effluent fluids, for example waste effluent produced in semiconductor and liquid crystal display manufacturing processes. Specifically, the present invention relates to improved monitoring and control features for the thermal reactor apparatus, including a flame sensing device, an intrinsically safe flammable gas sensing device, and a sequential mode of operation having built-in safety redundancy. The improved monitoring and control features ensure the safe and efficient abatement of waste effluent within the thermal reactor apparatus.
Abstract:
An abatement apparatus for introducing fuel into an electronic device manufacturing effluent abatement tool, including: a manifold; a fuel source adapted to supply fuel to the manifold through a fuel conduit; and a plurality of nozzles adapted to receive fuel from the manifold; wherein the manifold is adapted to supply fuel to the nozzles at a fuel velocity greater than a flame velocity.
Abstract:
A flame sensor apparatus for use with a flame heated thermal abatement reactor is provided, including a flame sensor adapted to sense a flame within the thermal abatement reactor; and a shutter adapted to selectively block the transmission of radiation from the flame to the flame sensor.