摘要:
A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a pyrochlore, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO2, or mixtures thereof and the hydrogen agent may be H2. In a particular embodiment, the hydrogenated product comprises olefins, paraffins, or mixtures thereof.
摘要:
A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO2, or mixtures thereof and the hydrogen agent may be H2. In a particular embodiment, the hydrogenated product comprises an alcohol, an olefin, an aldehyde, a ketone, an ester, an oxo-product, or mixtures thereof.
摘要:
A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 μm diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300° C., the second zone operates at 300-700° C., and the third operates at 700-1000° C., and fourth zone operates at at least 700° C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 μm or less.
摘要:
A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 μm diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300° C., the second zone operates at 300-700° C., and the third operates at 700-1000° C., and fourth zone operates at at least 700° C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 μm or less.
摘要:
A metal substituted hexaaluminate catalyst for reforming hydrocarbon fuels to synthesis gas of the general formula AByAl12-yO19-δ, A being selected from alkali metals, alkaline earth metals and lanthanide metals or mixtures thereof. A dopant or surface modifier selected from a transitions metal, a spinel of an oxygen-ion conductor is incorporated. The dopant may be Ca, Cs, K, La, Sr, Ba, Li, Mg, Ce, Co, Fe, Ir, Rh, Ni, Ru, Cu, Pe, Os, Pd, Cr, Mn, W, Re, Sn, Gd, V, Ti, Ag, Au, and mixtures thereof. The oxygen-ion conductor may be a perovskite selected from M′RhO3, M′PtO3, M′PdO3, M′IrO3, M′RuO3 wherein M′=Mg, Sr, Ba, La, Ca; a spinel selected from MRh2O4, MPt2O4, MPd2O4, MIr2O4, MRu2O4 wherein M=Mg, Sr, Ba, La, Ca and mixtures thereof; a florite is selected from M″O2.
摘要翻译:一种用于将烃燃料重整成通式为AByAl 12-y O 19-δ的合成气的金属取代六铝酸盐催化剂,A选自碱金属,碱土金属和镧系金属或其混合物。 从过渡金属,氧离子导体的尖晶石中掺入掺杂剂或表面改性剂。 掺杂剂可以是Ca,Cs,K,La,Sr,Ba,Li,Mg,Ce,Co,Fe,Ir,Rh,Ni,Ru,Cu,Pe,Os,Pd,Cr,Mn, Sn,Gd,V,Ti,Ag,Au及其混合物。 氧离子导体可以是选自M'RhO3,M'PtO3,M'PdO3,M'IrO3,M'RuO3的钙钛矿,其中M'= Mg,Sr,Ba,La,Ca; 选自MRh 2 O 4,MPt 2 O 4,MP d 2 O 4,MIr 2 O 4,MRu 2 O 4的尖晶石,其中M = Mg,Sr,Ba,La,Ca及其混合物; 选自M“O2的花青石。
摘要:
A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2-w-xA′wA″xB2-y-zB′yB″zO7-Δ. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.
摘要:
A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB′yB″zO7-Δ, where y>0 and z≧0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.
摘要:
The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700° C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700° C. by enabling a series of reactions which generate H2 and CH4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH4 at temperatures above 700° C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900° C. and pressures in excess of 10 atmospheres.
摘要:
The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.
摘要:
The present disclosure identifies pathways and mechanisms to confer production of carbon-based products of interest such as ethanol, ethylene, chemicals, polymers, n-alkanes, isoprenoids, pharmaceutical products or intermediates thereof in photoautotrophic organisms such that these organisms efficiently convert carbon dioxide and light into carbon-based products of interest, and in particular the use of such organisms for the commercial production of ethanol, ethylene, chemicals, polymers, n-alkanes, isoprenoids, pharmaceutical products or intermediates thereof.