摘要:
A thermoelastically actuated microresonator device comprising: a main body (14) having a cantilevered beam (12); a heating element (20) located adjacent a surface of the cantilevered beam and adjacent the main body, that may be periodically actuated to generate a periodic heat gradient across a height of the beam, thereby facilitating periodic deflection of the beam.
摘要:
Methods and systems may provide for detecting a location of an adjacent ultrasonic receiver of a battery powered device relative to a charging surface of a contactless charger. The charging surface may include an ultrasonic array of transmitter sub arrays, wherein one or more of the transmitter sub arrays may be selectively activated based on the location to focus an ultrasonic beam on the adjacent ultrasonic receiver. In one example, a movement of the adjacent ultrasonic receiver may be detected and the focus of the ultrasonic beam is adjusted in response to the movement.
摘要:
Piezoelectric switches and methods of forming piezoelectric switches. The piezoelectric switch includes first and second cantilever beam actuators. The second cantilever beam actuator has a projection that overlaps the first cantilever beam actuator in a contact region. The projection is mechanically separated from the first cantilever beam actuator by a nanogap such that the first and second cantilever beam actuators are electrically isolated from each other. Each of the first and second cantilever beam actuators includes a piezoelectric actuation layer.
摘要:
A MEMS device, such as an accelerometer or gyroscope, fabricated in interconnect metallization compatible with a CMOS microelectronic device. In embodiments, a proof mass has a first body region utilizing a thick metal layer that is separated from a thin metal layer. The thick metal layer has a film thickness that is significantly greater than that of the thin metal layer for increased mass. The proof mass further includes a first sensing structure comprising the thin metal layer, but lacking the thick metal layer for small feature sizes and increased capacitive coupling to a surrounding fame that includes a second sensing structure comprising the thin metal layer, but also lacking the thick metal layer. In further embodiments, the frame is released and includes regions with the thick metal layer to better match film stress-induced static deflection of the proof mass.
摘要:
Methods and systems may provide for detecting a location of an adjacent ultrasonic receiver of a battery powered device relative to a charging surface of a contactless charger. The charging surface may include an ultrasonic array of transmitter sub arrays, wherein one or more of the transmitter sub arrays may be selectively activated based on the location to focus an ultrasonic beam on the adjacent ultrasonic receiver. In one example, a movement of the adjacent ultrasonic receiver may be detected and the focus of the ultrasonic beam is adjusted in response to the movement.
摘要:
The present invention generally relates to a MEMS device having a plurality of cantilevers that are coupled together in an anchor region and/or by legs that are coupled in a center area of the cantilever. The legs ensure that each cantilever can move/release from above the RF electrode at the same voltage. The anchor region coupling matches the mechanical stiffness in all sections of the cantilever so that all of the cantilevers move together.
摘要:
A MEMS device, such as an accelerometer or gyroscope, fabricated in interconnect metallization compatible with a CMOS microelectronic device. In embodiments, a proof mass has a first body region utilizing a thick metal layer that is separated from a thin metal layer. The thick metal layer has a film thickness that is significantly greater than that of the thin metal layer for increased mass. The proof mass further includes a first sensing structure comprising the thin metal layer, but lacking the thick metal layer for small feature sizes and increased capacitive coupling to a surrounding fame that includes a second sensing structure comprising the thin metal layer, but also lacking the thick metal layer. In further embodiments, the frame is released and includes regions with the thick metal layer to better match film stress-induced static deflection of the proof mass.
摘要:
A Micro-Electro-Mechanical System (MEMS) accelerometer employing a rotor and stator that are both released from a substrate. In embodiments, the rotor and stator are each of continuous a metal thin film. A stress gradient in the film is manifested in capacitive members of the rotor and stator as a substantially equal deflection such that a relative displacement between the rotor and stator associated with an acceleration in the z-axis is substantially independent of the stress gradient. In embodiments, the stator comprises comb fingers cantilevered from a first anchor point while the rotor comprises comb fingers coupled to a proof mass by torsion springs affixed to the substrate at second anchor points proximate to the first anchor point.
摘要:
Piezoelectric switches and methods of forming piezoelectric switches. The piezoelectric switch includes first and second cantilever beam actuators. The second cantilever beam actuator has a projection that overlaps the first cantilever beam actuator in a contact region. The projection is mechanically separated from the first cantilever beam actuator by a nanogap such that the first and second cantilever beam actuators are electrically isolated from each other. Each of the first and second cantilever beam actuators includes a piezoelectric actuation layer.
摘要:
The present invention generally relates to a MEMS device having a plurality of cantilevers that are coupled together in an anchor region and/or by legs that are coupled in a center area of the cantilever. The legs ensure that each cantilever can move/release from above the RF electrode at the same voltage. The anchor region coupling matches the mechanical stiffness in all sections of the cantilever so that all of the cantilevers move together.