摘要:
The present invention relates to microstructures fabricated from semiconductor material and having a flexible member which is excited into various modes of resonance and in which such resonance is read optically. By coupling the microstructure to a surface or material of interest, a drive means will excite the flexible member into a characteristic resonance which when read optically gives indication of certain physical phenomena influencing the surface or material of interest. The microstructures of the present invention may be configured to self-resonate, as a so-called active device, under certain conditions. Many different physical phenomena may be quantified using the device of the present invention.
摘要:
A resonant strain gauge includes a silicon substrate, a polysilicon flexure beam attached at both ends to the substrate, and a polysilicon rigid cover cooperating with the substrate to enclose the flexure beam within a sealed vacuum chamber. An upper bias electrode is formed on the cover, and a lower bias electrode is formed on the substrate directly beneath and spaced apart from the flexure beam. A drive electrode is formed in or on the beam, centered between the upper and lower bias electrodes transversely with respect to the direction of beam elongation. The upper and lower electrodes are biased at constant voltage levels, of equal magnitude and opposite polarity. The drive electrode, ordinarily biased at ground, is selectively charged by applying an oscillating drive voltage, to cause mechanical oscillation of the beam. A piezoresistor element, formed on the beam, senses beam oscillation and provides a position indicating input to the oscillator circuit that drives the beam. The beam tends to oscillate at its natural resonant frequency. The piezoresistor thus provides the natural resonant frequency to the oscillating circuit, adjusting the frequency of the beam drive signal toward coincidence with the natural resonant frequency. A shield electrode can be formed on the flexure beam between the piezoresistor and the drive electrode, to insure against parasitic capacitance. In alternative embodiments, the drive signal is applied to one of the bias electrodes to oscillate the beam, and beam oscillation is sensed capacitively.
摘要:
Sealed cavity structures suitable for use as pressure transducers are formed on a single surface of a semiconductor substrate (20) by, for example, deposit of a polycrystalline silicon layer (32) from silane gas over a relatively large silicon dioxide post (22) and smaller silicon dioxide ridges (27) leading outwardly from the post. The polysilicon layer is masked and etched to expose the outer edges of the ridges and the entire structure is then immersed in an etchant which etches the silicon dioxide forming the ridges and the post but not the substrate (20) or the deposited polysilicon layer (32). A cavity structure results in which channels (35) are left in place of the ridges and extend from communication with the atmosphere to the cavity (36) left in place of the post. The cavity (36) may be sealed off from the external atmosphere by a second vapor deposition of polysilicon or silicon nitride, which fills up and seals off the channels (35), or by exposing the substrate and the structure thereon to an oxidizing ambient which results in growth of silicon dioxide in the channels sufficient to seal off the channels. Deflection of the membrane spanning the cavity occurring as a result of pressure changes, may be detected, for example, by piezoresistive devices formed on the membrane.
摘要:
Polycrystalline silicon is deposited in a film onto the surface of a substrate which has been carefully prepared to eliminate any defects or contaminants which could nucleate crystal growth on the substrate. The deposition is carried out by low pressure decomposition of silane at substantially 580.degree. C. to cause a film of fine grained crystals of polysilicon to be formed having grain sizes averaging less than about 300 Angstroms after annealing. Such a film is very uniform and smooth, having a surface roughness less than about 100 Angstroms RMS. Annealing of the film and substrate at a low temperature results in a compressive strain in the field that decreases over the annealing time, annealing at high temperatures (e.g., over 1050.degree. C.) yields substantially zero strain in the film, and annealing at intermediate temperatures (e.g., 650.degree. C. to 950.degree. C.) yields tensile strain at varying strain levels depending on the annealing temperature and time. Further processing of the polysilicon films and the substrate can yield isolated diaphragms of the polysilicon film which are supported only at edges by the substrate and which have substantial lateral dimensions, e.g., 1 cm by 1 cm. Such that structures can be used as pressure sensor diaphragms, X-ray masks, and optical filters, and can be provided with holes of varying sizes, shape and number, which can serve as X-ray mask patterns. The diaphragms can be provided with numerous holes of uniform size and spacing which allows the diaphragms to be used as filters in ultrafiltration applications.
摘要:
Sealed cavity structures suitable for use as pressure transducers are formed on a single surface of a semiconductor substrate (20) by, for example, deposit of a polycrystalline silicon layer (32) from silane gas over a relatively large silicon dioxide post (22) and smaller silicon dioxide ridges (27) leading outwardly from the post. The polysilicon layer is masked and etched to expose the outer edges of the ridges and the entire structure is then immersed in an etchant which etches the silicon dioxide forming the ridges and the post but not the substrate (20) of the deposited polysilicon layer (32). A cavity structure results in which channels (35) are left in place of the ridges and extend from communication with the atmosphere to the cavity (36) left in place of the post. The cavity (36) may be sealed off from the external atmosphere by a second vapor deposition of polysilicon or silicon nitride, which fills up and seals off the channels (35), or by exposing the substrate and the structure thereon to an oxidizing ambient which results in growth of silicon dioxide in the channels sufficient to seal off the channels. Deflection of the membrane spanning the cavity occurring as a result of pressure changes, may be detected, for example, by piezoresistive devices formed on the membrane.
摘要:
Sealed cavity structures suitable for use as pressure transducers are formed on a single surface of a semiconductor substrate (20) by, for example, deposit of a polycrystalline silicon layer (32) from silane gas over a relatively large silicon dioxide post (22) and smaller silicon dioxide ridges (27) leading outwardly from the post. The polysilicon layer is masked and etched to expose the outer edges of the ridges and the entire structure is then immersed in an etchant which etches the silicon dioxide forming the ridges and the post but not the substrate (20) or the deposited polysilicon layer (32). A cavity structure results in which channels (35) are left in place of the ridges and extend from communication with the atmosphere to the cavity (36) left in place of the post. The cavity (36) may be sealed off from the external atmosphere by a second vapor deposition of polysilicon or silicon nitride, which fills up and seals off the channels (35), or by exposing the substrate and the structure thereon to an oxidizing ambient which results in growth of silicon dioxide in the channels sufficient to seal off the channels. Deflection of the membrane spanning the cavity occurring as a result of pressure changes, may be detected, for example, by piezoresistive devices formed on the membrane.
摘要:
A mobile display device may include a first display panel with a display screen having a viewing surface and a second display panel with a display screen having a viewing surface. The display panels may be coupled with a multi-position hinge. A first operating system may be coupled to the first display panel and a second operating system may be coupled to the second display panel. The first operating system may operate independently of the second operating system and the second operating system may operate independently of the first operating system.
摘要:
In a multi-threaded processor, thread priority variables are set up in memory. The actual assignment of thread priority is based on the expiration of a thread precedence counter. To further augment, the effectiveness of the thread precedence counters, starting counters are associated with each thread that serve as a multiplier for the value to be used in the thread precedence counter. The value in the starting counters are manipulated so as to prevent one thread from getting undue priority to the resources of the multi-threaded processor.
摘要:
In a multi-threaded processor, thread priority variables are set up in memory. The actual assignment of thread priority is based on the expiration of a thread precedence counter. To further augment, the effectiveness of the thread precedence counters, starting counters are associated with each thread that serve as a multiplier for the value to be used in the thread precedence counter. The value in the starting counters are manipulated so as to prevent one thread from getting undue priority to the resources of the multi-threaded processor.
摘要:
In a multi-threaded processor, thread priority variables are set up in memory. The actual assignment of thread priority is based on the expiration of a thread precedence counter. To further augment, the effectiveness of the thread precedence counters, starting counters are associated with each thread that serve as a multiplier for the value to be used in the thread precedence counter. The value in the starting counters are manipulated so as to prevent one thread from getting undue priority to the resources of the multi-threaded processor.