Abstract:
Photovoltaic device includes a wafer, wherein it comprises a plurality of discontinuous first conductors oriented in a first direction, which conductors are interrupted in interconnection zones, and in that at least one second conductor electrically connects the first conductors to one another in the interconnection zones, and in that it includes at least one metal strip or braid fastened to at least one electrical conductor, this at least one metal strip or braid including fastening zones in which it is mechanically and electrically connected to an electrical conductor and non-connected zones in which the metal strip or braid is not mechanically fastened to an electrical conductor.
Abstract:
Thermal device comprising a thermal part (20) comprising a multitude of heat-transfer tubes (21) for the passage of a heat-transfer fluid, characterized in that it comprises a light guide (10) placed above the thermal part (20), this light guide (10) having an optical property allowing an incident light ray to be guided in various exit directions depending or the angle of incidence of the incident light ray, so as to orient most of the incident light onto the heat-transfer tubes (21) at low incidence, such as in winter, and to beside these heat-transfer tubes (21) at high incidence, such as in summer.
Abstract:
Photovoltaic device includes a wafer, wherein it comprises a plurality of discontinuous first conductors oriented in a first direction, which conductors are interrupted in interconnection zones, and in that at least one second conductor electrically connects the first conductors to one another in the interconnection zones, and in that it includes at least one metal strip or braid fastened to at least one electrical conductor, this at least one metal strip or braid including fastening zones in which it is mechanically and electrically connected to an electrical conductor and non-connected zones in which the metal strip or braid is not mechanically fastened to an electrical conductor.
Abstract:
Photovoltaic module (11) comprising a plurality of electrically connected photovoltaic cells (12), characterized in that it has a square shape and comprises at least two contact pads (17, 18) in each corner of the module so as to comprise at least four connectors (14, 15) on each edge (21; 22; 23; 24) of the module.
Abstract:
The invention relates to a method for making an integrated circuit (40) of the surface-mount type the comprising, first of all, manufacture of a package having a rear face and a pin grid array extending under this rear face perpendicular thereto, and a ball (44) of low melting point alloy is then formed at the end of each pin surrounding this end and soldered thereto.The invention also relates to an integrated circuit (40) of the surface-mount type, comprising a package having a rear face and a pin grid array, of a cross section roughly constant along the pin (42), extending under the rear face perpendicular thereto. A ball (44) of low melting point alloy is soldered to the end of each pin (42) surrounding this end.
Abstract:
Photovoltaic module device (1) comprising a photovoltaic module (4) and an electrical connection element of a first type (2), characterized in that the connection element of the first type comprises an electrical connector of a first type (24, 25) and a first mechanical link element (23, 26) from the photovoltaic module to the electrical connector of the first type.
Abstract:
Photovoltaic module device (1) comprising a photovoltaic module (4) and an electrical connection element of a first type (2), characterized in that the connection element of the first type comprises an electrical connector of a first type (24, 25) and a first mechanical link element (23, 26) from the photovoltaic module to the electrical connector of the first type.
Abstract:
Process for manufacturing a photovoltaic device, characterised in that it comprises the following steps: assembling at least one photovoltaic cell (12) to a flexible substrate (20); then, producing notches (17) in the at least one photovoltaic cell in order to give it flexibility and allow the photovoltaic device to be deformed.
Abstract:
An electrical and/or electronic device including: an electrical and/or electronic component; two layers of material forming front and back faces of the device and between which the electrical and/or electronic component is encapsulated, the component including at least two opposite faces placed facing the two layers of material; an electrical contact element placed in contact with one of the faces of the electrical and/or electronic component; an element based on at least one elastic material placed between one of the two layers of material and the electrical contact element, forming a first layer of elastic material covering the one of the two layers of material; and a second layer based on at least one elastic material with an elastic stiffness less than the stiffness of the elastic material in the first layer, placed in contact with the first layer of elastic material.
Abstract:
A method for molding and soldering electrical connection pads to the electrical connection-receiving zones of electronic components or circuits includes an operation for the injection of conductive liquid alloy into a guide open at one end placed so as to face the connection-receiving zone of the component. The guide is formed by two separable parts, a mold and an injection matrix, the mold and the injection matrix including passages, with a narrowing of the guide at the level of the separation of the parts, and the parts of the guide are separated while the alloy is in the liquid state. Such a method may find particular application to, as an example, making connection pads for substrates or electronic components.