摘要:
Disclosed herein are a branched nanowire having parasitic nanowires grown at a surface of the branched nanowire, and a method for fabricating the same. The branched nanowire may be fabricated in a fractal form and seeds of the parasitic nanowires may be formed by thermal energy irradiation and/or a wet-etching process. The branched nanowire may effectively be used in a wide variety of applications such as, for example, sensors, photodetectors, light emitting elements, light receiving elements, and the like.
摘要:
The present invention relates to a composition containing Substance P for preventing or treating an inflammation. The composition containing Substance P according to the present invention exhibits the effect of decreasing leukocytes, neutrophils and hematopoietic stem cells in a blood, which are associated with the inflammation, and of increasing anti-inflammatory cytokines, regulatory T-lymphocytes, anti-inflammatory macrophages and the like, thereby terminating inflammatory response at an early stage, and is thus highly effective in preventing and treating the inflammation caused by a non-traumatic, traumatic, infectious or ischemic retinal injury.
摘要:
Disclosed herein is a nanowire including silicon rich oxide and a method for producing the same. The nanowire exhibits excellent electrically conducting properties and optical characteristics, and therefore is effectively used in a variety of applications including, for example, solar cells, sensors, photodetectors, light emitting diodes, laser diodes, EL devices, PL devices, CL devices, FETs, CTFs, surface plasmon waveguides, MOS capacitors and the like.
摘要:
Disclosed are an organic polymer semiconductor, an ambipolar organic thin film transistor using the same, an electronic device comprising the ambipolar organic thin film transistor and methods of fabricating the same. Example embodiments relate to an organic polymer semiconductor, which may include an aromatic ring derivative having p-type semiconductor properties and a heteroaromatic ring having n-type semiconductor properties in the main chain thereof, and which thus may exhibit both p-type transistor properties and n-type transistor properties when used in the organic active layer of an electronic device, e.g., an organic thin film transistor, an ambipolar organic thin film transistor using such an organic polymer semiconductor, an electronic device comprising the ambipolar organic thin film transistor and methods of fabricating the same.
摘要:
Compounds having the formula I wherein R1, R2, R3, R4, R5a, R5b, R5c and R6 are as defined herein are Hepatitis C virus NS5b polymerase inhibitors. Also disclosed are compositions and methods for treating an HCV infection and inhibiting HCV replication.
摘要:
A quantum dot electroluminescent device that includes a substrate, a quantum dot light-emitting layer disposed on the substrate, a first electrode which injects charge carriers into the quantum dot light-emitting layer, a second electrode which injects charge carriers, which have an opposite charge than the charge carriers injected by the first electrode, into the quantum dot light-emitting layer, a hole transport layer disposed between the first electrode and the quantum dot light-emitting layer, and an electron transport layer disposed between the second electrode and the quantum dot light-emitting layer, wherein the quantum dot light-emitting layer has a first surface in contact with the hole transport layer and a second surface in contact with an electron transport layer, and wherein the first surface has an organic ligand distribution that is different from an organic ligand distribution of the second surface.
摘要:
Disclosed is a light-emitting device using a transistor structure, including a substrate, a first gate electrode, a first insulating layer, a source electrode, a drain electrode, and a light-emitting layer formed between the source electrode and the drain electrode in a direction parallel to these electrodes. In the light-emitting device using the transistor structure, it is possible to adjust the mobility of electrons or holes and to selectively set a light-emitting region through the control of the magnitude of voltage applied to the gate electrode, thus increasing the lifespan of the light-emitting device, facilitating the manufacturing process thereof, and realizing light-emitting or light-receiving properties having high efficiency and high purity.
摘要:
A star-shaped oligothiophene-arylene derivative in which an oligothiophene having p-type semiconductor characteristics is bonded to an arylene having n-type semiconductor characteristics positioned in the central moiety of the molecule and forms a star shape with the arylene, thereby simultaneously exhibiting both p-type and n-type semiconductor characteristics. Further, an organic thin film transistor using the oligothiophene-arylene derivative. The star-shaped oligothiophene-arylene derivative can be spin-coated at room temperature, leading to the fabrication of organic thin film transistors simultaneously satisfying the requirements of high charge carrier mobility and low off-state leakage current.
摘要:
A ruggedized, high brightness, liquid crystal display (LCD) unit having a thin display panel, a front cover glass faceplate and an improved backlight assembly is disclosed. The faceplate is bonded to the panel using an improved process to minimize panel deformation and the backlight assembly is configured with an array of selectively spaced light emitting diodes (LED's) adapted to provide a uniform high brightness display with a minimal quantity of LED's.
摘要:
Disclosed herein is a method for producing nanowires, which features the use of a porous glass template in combination with a solid-liquid-solid or vapor-liquid-solid process for growing nanowires which are highly straight and have nanoparticles precisely arranged therein. The nanowires can be grown into composite structures of superlattices and hybrids by modulating the composition of the materials provided thereto. Also disclosed is the use of the nanowires in multi-probes, field emission tips, and devices.