摘要:
A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches includes a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.
摘要:
A first embodiment is a common drain+clip 20. It has a conventional drain contact on its bottom surface and is flip chip mounted on a half-etched leadframe 40 which has external source, gate and drain contacts connected to the sources, gate and common drain of the die 20. Common drain clip 50 connects the drain 30 to external contacts between opposite gate contacts. A second embodiment is a direct drain embodiment+heatslug. The device 80 has a top drain contact 36 that extends to the common drain 30 across the bottom of the die which is flip chip mounted to a half-etched leadframe having external source, gate and drain contacts connected to the sources, gates and common drain of the die 80.
摘要:
A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches includes a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.
摘要:
A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches includes a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.
摘要:
A field effect transistor includes a plurality of trenches extending into a semiconductor region of a first conductivity type. The plurality of trenches includes a plurality of gated trenches and a plurality of non-gated trenches. A body region of a second conductivity extends in the semiconductor region between adjacent trenches. A dielectric material fills a bottom portion of each of the gated and non-gated trenches. A gate electrode is disposed in each gated trench. A conductive material of the second conductivity type is disposed in each non-gated trench such that the conductive material and contacts corresponding body regions along sidewalls of the non-gated trench.
摘要:
A first embodiment is a common drain+clip 20. It has a conventional drain contact on its bottom surface and is flip chip mounted on a half-etched leadframe 40 which has external source, gate and drain contacts connected to the sources, gate and common drain of the die 20. Common drain clip 50 connects the drain 30 to external contacts between opposite gate contacts. A second embodiment is a direct drain embodiment+heatslug. The device 80 has a top drain contact 36 that extends to the common drain 30 across the bottom of the die which is flip chip mounted to a half-etched leadframe having external source, gate and drain contacts connected to the sources, gates and common drain of the die 80.
摘要:
In one general aspect, a system can include a through-silicon-via (TSV) coupling a drain region associated with a vertical transistor to a back metal disposed on a second side of the substrate opposite the first side. The system can include a first metal layer, and a second metal layer aligned orthogonal to the first metal layer. The system can define a conduction path extending substantially vertically through the TSV to the substrate and laterally through the substrate.
摘要:
In accordance with an embodiment a structure can include a monolithically integrated trench field-effect transistor (FET) and Schottky diode. The structure can include a first gate trench extending into a semiconductor region, a second gate trench extending into the semiconductor region, and a source region flanking a side of the first gate trench. The source region can have a substantially triangular shape, and a contact opening extending into the semiconductor region between the first gate trench and the second gate trench. The structure can include a conductor layer disposed in the contact opening to electrically contact the source region along at least a portion of a slanted sidewall of the source region, and the semiconductor region along a bottom portion of the contact opening. The conductor layer can form a Schottky contact with the semiconductor region.