摘要:
A crystalline metal organosilicate having the composition, in its anhydrous state, as follows:0.9.+-.0.2[xR.sub.2 O+(1-x)M.sub.2/n O]: 1SiO.sub.2where M is a metal, other than a metal of Group IIIA, n is the valence of said metal, R is an alkyl ammonium radical and x is a number greater than 0 but not exceeding 1, said organosilicate being characterized by a specified X-ray diffraction pattern. Said organosilicate is prepared by digesting a reaction mixture comprising (R.sub.4 N).sub.2 O, sodium oxide, an oxide of a metal other than a metal of group IIIA, an oxide of silicon and water. The crystalline organosilicates are useful as adsorbents and in their catalytically active form as catalysts for organic compound conversion.
摘要:
A new porous zeolite, a method of making same and the use thereof in catalytic conversion of organic compounds. The new product has a composition, expressed in terms of moles of anhydrous oxides per 100 moles of silica as follows:(0-2.5)M.sub.2/n O:(0- 2.5)Al.sub.2 O.sub.3 :(100)SiO.sub.2wherein M is at least one cation having a valence n and wherein the zeolite is characterized by the distinctive X-ray powder diffraction pattern as shown in Table 1 herein. The new zeolite is prepared from a reaction mixture comprising a source of silica, a source of organic compounds of Group VB, alkali metal cations, water and with or without a source of alumina.
摘要:
A new porous zeolite, a method of making same and the use thereof in catalytic conversion of organic compounds. The new product has a composition, expressed in terms of moles of anhydrous oxides per 100 moles of silica as follows:(0-2.5)M.sub.2 /nO: (0-2.5)Al.sub.2 O.sub.3 : (100)SiO.sub.2wherein M is at least one cation having a valence n and wherein the zeolite is characterized by the distinctive X-ray powder diffraction pattern as shown in Table 1 herein. The new zeolite is prepared from a reaction mixture comprising a source of silica, a source of organic compounds of Group VB, alkali metal cations, water and with or without a source of alumina.
摘要:
A crystalline metal organosilicate having the composition, in its anhydrous state, as follows:0.9 .+-. 0.2 [xR.sub.2 O + (1-x) M.sub.2/n O]: 1SiO.sub.2where M is a metal, other than a metal of Group IIIA, n is the valence of said metal, R is an alkyl ammonium radical and x is a number greater than 0 but not exceeding 1, said organosilicate being characterized by a specified X-ray diffraction pattern. Said organosilicate is prepared by digesting a reaction mixture comprising (R.sub.4 N).sub.2 O, sodium oxide, an oxide of a metal other than a metal of group IIIA, an oxide of silicon and water. The crystalline organosilicates are useful as adsorbents and in their catalytically active form as catalysts for organic compound conversion.
摘要:
A new zeolite, designated ZSM-22, is disclosed and claimed. The new zeolite has the composition, in the anhydrous state, expressed in terms of mole ratios of oxides as follows:(x)Q.sub.2 O:(y)M.sub.2/n O:(z)L.sub.2 O.sub.3 :100SiO.sub.2wherein Q.sub.2 O is the oxide form of an organic compound containing an element of Group 5-B (as defined in the Table of the Elements--National Bureau of Standards, Fischer Scientific Co. Catalog No. 5-702-10), e.g., N or P, preferably N, containing at least one alkyl or aryl group having at least 2 carbon atoms, M is an alkali or alkaline earth metal having a valence n, e.g., Na, K, Cs or Li and wherein x=0.01-2.0, y=0-2.0, z=0-5, and L=Al. The zeolite is useful in the process of catalytic conversion of alcohols and/or oxygenates to gasoline-grade hydrocarbons.
摘要:
A method is provided for reducing NO.sub.x for high flow applications such as NO.sub.x abatement in an exhaust gas from an internal combustion engine operating under lean burn conditions wherein NO.sub.x is reduced by hydrocarbon reductants. The method employs a hydrothermally stable catalyst comprising transition metal-containing ZSM-5 which is prepared by in-situ crystallization of an aggregate comprising ZSM-5 seeds, silica, and a crystalline silicate.
摘要:
A process for catalytically cracking a hydrocarbon feed in a reaction zone under catalytic cracking conditions in the absence of added hydrogen with a catalyst comprising a conventional cracking catalyst. The improvement comprises adding to the conventional cracking catalyst a thermally treated zeolite having a mole ratio of SiO.sub.2 :Al.sub.2 O.sub.3 of about 10:1 to 100:1 and a constraint index of about 1 to 12. Thermal treatment reduces the additive zeolite's alpha activity to about 1 to 10 prior to use.
摘要翻译:在催化裂化条件下,在没有加入氢气的情况下,用含有常规裂化催化剂的催化剂,在反应区中催化裂化烃原料的方法。 改进包括向常规裂化催化剂中加入具有约10:1至100:1摩尔比的SiO 2 :Al 2 O 3的热处理沸石,约1至12的约束指数。热处理将添加沸石的α活性降低至约 使用前1至10。
摘要:
The invention provides a method of making large crystallite zeolites by a method comprising forming the zeolite in a medium containing a combination of two different alkylammonium cations or a combination of an alkylammonium cation and a metallic cation. In the combination at least one of the cations will have an ionic radius of from about 1.40 to the pore size of the specific zeolite.
摘要:
Propylation of toluene with selective production of cymene is accomplished by vapor phase reaction of toluene and propylene at a temperature between about 400.degree. and about 600.degree. F. in the presence of a catalyst comprising a crystalline aluminosilicate zeolite, said zeolite having a silica to alumina ratio of at least about 12 and a constraint index, as hereinafter defined, within the approximate range of 1 to 12.
摘要:
As synthesized by conventional technique, zeolite ZSM-5 is crystallized in the presence of substantial amount of tetraalkylammonium cations, the alkyl groups of which contain 2 to 5 carbon atoms, such as, for example, tetrapropylammonium. When synthesized in the conventional way, ZSM-5 contains tetraalkylammonium cations as well as a substantial amount of sodium ions. To obtain a more catalytically active form of ZSM-5, the sodium ions must be exchanged to very low levels. By synthesizing zeolite ZSM-5 according to the present method, i.e., in the presence of a combination of an amine and a halide in the presence of a mutual solvent and with a specifically defined reaction mixture composition, ZSM-5 having different organic nitrogen-containing cations but the same crystal structure as conventionally prepared ZSM-5 is obtained. The ZSM-5 prepared in accordance herewith is very low in sodium content as synthesized and has a crystal size of from about 0.05 microns to about 20 microns.