摘要:
The present invention relates to a process for producing a layer comprising at least one semiconductive metal oxide on a substrate, comprising at least the steps of:(A) applying a porous layer of at least one semiconductive metal oxide to a substrate,(B) treating the porous layer from step (A) with a solution comprising at least one precursor compound of the semiconductive metal oxide, such that the pores of the porous layer are at least partly filled with this solution and(C) thermally treating the layer obtained in step (B) in order to convert the at least one precursor compound of the semiconductive metal oxide to the semiconductive metal oxide,wherein the at least one precursor compound of the at least one semiconductive metal oxide in step (B) is selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids, alkoxides, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, oximates, urethanes, ammonia, amines, phosphines, ammonium compounds, nitrates, nitrites or azides of the corresponding metal, and mixtures thereof.
摘要:
The present invention relates to a process for producing a layer comprising at least one semiconductive metal oxide on a substrate, comprising at least the steps of: (A) preparing a solution comprising at least one precursor compound of the at least one metal oxide selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms, or derivatives of mono-, di- or polycarboxylic acids, alkoxides, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, phosphines, ammonium compounds, azides of the corresponding metal and mixtures thereof, in at least one solvent, (B) applying the solution from step (A) to the substrate and (C) thermally treating the substrate from step (B) at a temperature of 20 to 200° C., in order to convert the at least one precursor compound to at least one semiconductive metal oxide, where, if electrically neutral [(OH)x(NH3)yZn]z where x, y and z are each independently 0.01 to 10 is used as the precursor compound in step (A), it is obtained by reacting zinc oxide or zinc hydroxide with ammonia, to a substrate which has been coated with at least one semiconductive metal oxide and is obtainable by this process, to the use of this substrate in electronic components, and to a process for preparing electrically neutral [(OH)x(NH3)yZn]z where x, y and z are each independently 0.01 to 10, by reacting zinc oxide and/or zinc hydroxide with ammonia.
摘要:
The present invention relates to a process for producing a layer comprising at least one semiconductive metal oxide on a substrate, comprising at least the steps of: (A) preparing a solution comprising at least one precursor compound of the at least one metal oxide selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms, or derivatives of mono-, di- or polycarboxylic acids, alkoxides, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, urethanes, ammonia, amines, phosphines, ammonium compounds, azides of the corresponding metal and mixtures thereof, in at least one solvent, (B) applying the solution from step (A) to the substrate and (C) thermally treating the substrate from step (B) at a temperature of 20 to 200° C., in order to convert the at least one precursor compound to at least one semiconductive metal oxide, where, if electrically neutral [(OH)x(NH3)yZn]z where x, y and z are each independently 0.01 to 10 is used as the precursor compound in step (A), it is obtained by reacting zinc oxide or zinc hydroxide with ammonia, to a substrate which has been coated with at least one semiconductive metal oxide and is obtainable by this process, to the use of this substrate in electronic components, and to a process for preparing electrically neutral [(OH)x(NH3)yZn]z where x, y and z are each independently 0.01 to 10, by reacting zinc oxide and/or zinc hydroxide with ammonia.
摘要:
The present invention relates to a process for producing a layer comprising at least one semiconductive metal oxide on a substrate, comprising at least the steps of: (A) applying a porous layer of at least one semiconductive metal oxide to a substrate, (B) treating the porous layer from step (A) with a solution comprising at least one precursor compound of the semiconductive metal oxide, such that the pores of the porous layer are at least partly filled with this solution and (C) thermally treating the layer obtained in step (B) in order to convert the at least one precursor compound of the semiconductive metal oxide to the semiconductive metal oxide, wherein the at least one precursor compound of the at least one semiconductive metal oxide in step (B) is selected from the group consisting of carboxylates of mono-, di- or polycarboxylic acids having at least three carbon atoms or derivatives of mono-, di- or polycarboxylic acids, alkoxides, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, oximates, urethanes, ammonia, amines, phosphines, ammonium compounds, nitrates, nitrites or azides of the corresponding metal, and mixtures thereof.
摘要:
The present invention relates to particles which have been modified by a modifier and a dispersion medium comprising the modified particles.The surface-modified metal, metal halide, metal chalcogenide, metal nitride, metal phosphide, metal boride or metal phosphate particles or mixtures thereof have an average particle diameter of from 1 to 500 nm and their surface has been modified by one or more modifiers of the formula (I) (II) and (III)
摘要:
The present invention relates to particles which have been modified by a modifier and a dispersion medium comprising the modified particles.The surface-modified metal, metal halide, metal chalcogenide, metal nitride, metal phosphide, metal boride or metal phosphate particles or mixtures thereof have an average particle diameter of from 1 to 500 nm and their surface has been modified by one or more modifiers of the formula (I) (II) and (III)
摘要:
A screen-printing paste containing Cu.sub.2 O or NiO and preferably aluminum oxide or, more preferably, an aluminum compound such as aluminum acetylacetonate which forms aluminum oxide under calcination heat, is printed over an entire surface of a substrate consisting of aluminum oxide ceramic, after which it is calcined in air at from 800.degree. to 1350.degree. C. to produce an adhesion-promoting spinel layer. That layer is then metallized by plating in an electroless bath for deposition of copper or nickel, as the case may be, after which the metal layer thus deposited is reinforced galvanically. A positive photoresist layer can be applied to the electroless deposited copper or nickel layer, illuminated through an appropriate mask and developed to expose a desired pattern of the underlying electroless copper layer for galvanic reinforcement, so that after removal of the unexposed portion of the mask the unreinforced electroless layer can be removed by etching without impairment of the reinforced conducting pattern.
摘要:
A method of fabricating an insulating joint between a pair of end abutting rail sections of a railroad track includes the suspension of a pair of opposed fishplates at the rail joint at spaced distances outwardly of the rail sides, and simultaneously heating the rail sections and the fishplates to a predetermined temperature for activating a heat-activatable adhesive provided in fabric cuffs which are disposed between the fish surfaces and the fishplates. The fishplates are shifted along guide rods of their support assemblies inwardly toward one another into place against opposed fish surfaces of the rail sections, and are thereafter bolted in place. A device for fabricating the joint includes a box-like hood on which heaters are mounted, or a shear assembly supporting the heaters and being clamped onto the rail head. The heaters may be adjusted to accommodate various rail profiles.
摘要:
To improve operation and output voltage, particularly at 400.degree. C. and less, an oxygen sensor, especially adapted to determine oxygen content of automotive exhaust gases, is constructed by utilizing two electrodes applied on a body of stabilized zirconium dioxide, for example a closed tube, by making an electrode exposed to the exhaust gases in form of a mixture of finely dispersed ceramic material and a platinum-rhodium alloy, the ceramic material being present at about 40% (by volume) and 60% (by volume) platinum-rhodium alloy of 50-94% platinum and 50-6% rhodium (by weight). The second electrode, exposed to a reference gas comprises an alloy of palladium and another noble metal in a ratio of about 19-90% (by weight) Pd and 81-10% (by weight) noble metal. This electrode may also contain up to 40% (by volume) finely dispersed ceramic material. The electrode exposed to the exhaust gases is covered with a porous coating. The electrodes can be applied as aqueous or organic solutions of soluble noble metal compounds or suspensions, colloidal suspensions, with organic solvents, and the like, and subsequent sintering.
摘要:
The invention relates, among other items, to a device (10) with a plurality of inlets (27a, 27b, 27c, 27d, 27e, 27f) and one outlet (19), wherein each of the inlets (27a, 27b, 27c, 27d, 27e, 27f) can be connected to a material supply container (13a, 13b, 13c, 13d, 13e, 13f). An actuator (12) that can be displaced relative to the inlets and has a through-channel (42) is furnished in order to provide a switchable connection between one of the plurality of inlets and the outlet. A communicative connection can be created between the through-channel and one of the various inlets in order to allow various materials to be successively supplied to the outlet. One of the characteristic features is that at least one of the inlets (28) is designed as a flushing medium inlet of a flushing device (47) and that, as a result of the actuator (12) being displaced, a communicative connection can be created between the through-channel (42) and the flushing medium inlet for the purposes of flushing the through channel.