Abstract:
A semiconductor structure includes a semiconductor substrate, an active region and a dummy gate structure disposed over the active region. A sacrificial conformal layer, including a bottom oxide layer and a top nitride layer are provided over the dummy gate structure and active region to protect the dummy gate during source and drain implantation. The active region is implanted using dopants such as, a n-type dopant or a p-type dopant to create a source region and a drain region in the active region, after which the sacrificial conformal layer is removed.
Abstract:
A semiconductor structure includes a semiconductor substrate, an active region and a dummy gate structure disposed over the active region. A sacrificial conformal layer, including a bottom oxide layer and a top nitride layer are provided over the dummy gate structure and active region to protect the dummy gate during source and drain implantation. The active region is implanted using dopants such as, a n-type dopant or a p-type dopant to create a source region and a drain region in the active region, after which the sacrificial conformal layer is removed.
Abstract:
A lithographic stack over a raised structure (e.g., fin) of a non-planar semiconductor structure, such as a FinFET, includes a bottom layer of spin-on amorphous carbon or spin-on organic planarizing material, a hard mask layer of a nitride and/or an oxide on the spin-on layer, a layer of a developable bottom anti-reflective coating (dBARC) on the hard mask layer, and a top layer of photoresist. The stack is etched to expose and recess the raised structure, and epitaxial structure(s) are grown on the recess.
Abstract:
A method of forming spacers and the resulting fin-shaped field effect transistors are provided. Embodiments include forming a silicon (Si) fin over a substrate; forming a polysilicon gate over the Si fin; and forming a spacer on top and side surfaces of the polysilicon gate, and on exposed upper and side surfaces of the Si fin, the spacer including: a first layer and second layer having a first dielectric constant, and a third layer formed between the first and second layers and having a second dielectric constant, wherein the second dielectric constant is lower than the first dielectric constant.
Abstract:
Approaches for forming an epitaxial (epi) source/drain (S/D) and/or a semiconductor device having an epi S/D are provided. In embodiments of the invention, a first portion of the epi S/D is formed in the S/D region on a fin in a finned substrate. After the first portion is formed, but before completion of the formation of the S/D, a secondary spacer is formed in the S/D region. Then, the remainder portion of the S/D is formed in the S/D region. As a result, the S/D is separated from the gate stack by the secondary spacer.
Abstract:
The use of two different materials for shallow trench isolation and deep structural trenches with a dielectric material therein (e.g., flowable oxide and a HARP oxide, respectively) causes non-uniform heights of exposed portions of raised semiconductor structures for non-planar semiconductor devices, due to the different etch rates of the materials. Non-uniform openings adjacent the exposed portions of the raised structures from recessing the isolation and dielectric materials are filled with additional dielectric material to create a uniform top layer of one material (the dielectric material), which can then be uniformly recessed to expose uniform portions of the raised structures.
Abstract:
In a non-planar based semiconductor process where the structure includes both N and P type raised structures (e.g., fins), and where a different type of epitaxy is to be grown on each of the N and P type raised structures, prior to the growing, a lithographic blocking material over one of the N and P type raised structure portions is selectively etched to expose and planarize a gate cap. After the first type of epitaxy is grown, the process is repeated for the other of the N and P type epitaxy.
Abstract:
Approaches for forming an epitaxial (epi) source/drain (S/D) and/or a semiconductor device having an epi S/D are provided. In embodiments of the invention, a first portion of the epi S/D is formed in the S/D region on a fin in a finned substrate. After the first portion is formed, but before completion of the formation of the S/D, a secondary spacer is formed in the S/D region. Then, the remainder portion of the S/D is formed in the S/D region. As a result, the S/D is separated from the gate stack by the secondary spacer.