Abstract:
We report a semiconductor device, containing a semiconductor substrate; an isolation feature on the substrate; a plurality of gates on the isolation feature, wherein each gate comprises a gate electrode and a high-k dielectric layer disposed between the gate electrode and the isolation feature and disposed on and in contact with at least one side of the gate electrode; and a fill metal between the plurality of gates on the isolation feature. We also report methods of forming such a device, and a system for manufacturing such a device.
Abstract:
We report a semiconductor device, containing a semiconductor substrate; an isolation feature on the substrate; a plurality of gates on the isolation feature, wherein each gate comprises a gate electrode and a high-k dielectric layer disposed between the gate electrode and the isolation feature and disposed on and in contact with at least one side of the gate electrode; and a fill metal between the plurality of gates on the isolation feature. We also report methods of forming such a device, and a system for manufacturing such a device.
Abstract:
A semiconductor structure is provided that includes a semiconductor on insulator (SOI) substrate comprising a bottom semiconductor layer, an epitaxial semiconductor layer present on the bottom semiconductor layer, a buried insulator layer present on the epitaxial semiconductor layer, and a top semiconductor layer present on the buried insulator layer. A deep trench moat (DTMOAT) is disposed in the SOI substrate and has a bottom surface contacting a dopant region of the bottom semiconductor layer. A moat contact electrically connecting the DTMOAT to the epitaxial semiconductor layer of the SOI substrate. Charges accumulated in the DTMOAT can be discharged through the heavily doped epitaxial semiconductor layer to ground, thus preventing the DTMOAT failure caused by the process-induced charge accumulation.
Abstract:
One method disclosed herein includes, among other things, forming a line-end protection layer in an opening on an entirety of each opposing, spaced-apart first and second end face surfaces of first and second spaced-apart gate electrode structures, respectively, and forming a sidewall spacer adjacent opposing sidewall surfaces of each of the gate electrode structures but not adjacent the opposing first and second end face surfaces having the line-end protection layer positioned thereon.
Abstract:
We report a semiconductor device, containing a semiconductor substrate; an isolation feature on the substrate; a plurality of gates on the isolation feature, wherein each gate comprises a gate electrode and a high-k dielectric layer disposed between the gate electrode and the isolation feature and disposed on and in contact with at least one side of the gate electrode; and a fill metal between the plurality of gates on the isolation feature. We also report methods of forming such a device, and a system for manufacturing such a device.
Abstract:
Structures for a field-effect transistor and methods of forming structures for a field-effect transistor. A plurality of channel layers are arranged in a layer stack, and a source/drain region is connected with the plurality of channel layers. A gate structure includes a plurality of sections that respectively surround the plurality of channel layers. The plurality of channel layers contain a two-dimensional semiconducting material.
Abstract:
Various embodiments include three-dimensional (3D) integrated circuit (IC) structures and methods of forming such structures. In some cases, a 3D IC structure includes: a substrate; a first set of transistors overlying the substrate; a first inter-level dielectric (ILD) overlying the first set of transistors and the substrate; a dielectric overlying the first ILD; a semiconductor layer overlying the dielectric; a second set of transistors overlying the semiconductor layer; a capacitor embedded within the dielectric; and a first contact extending through the semiconductor layer and the dielectric to contact one layer of the capacitor, and a second contact extending through the semiconductor layer and the dielectric to contact a second, distinct layer of the capacitor.
Abstract:
A transistor device includes first and second spaced-apart active regions positioned in a semiconductor substrate, each of the respective first and second spaced-apart active regions having at least one fin. First and second spaced-apart gate structures are positioned above the respective first and second active regions, each of the first and second gate structures having end surfaces. A gate separation structure is positioned between the first and second spaced-apart gate structures, wherein first and second opposing surfaces of the gate separation structure abut an entirety of the respective end surfaces of the first and second spaced-apart gate structures, and wherein an upper surface of the gate separation structure is positioned at a greater height level above the semiconductor substrate than an upper surface of the at least one fin of each of the respective first and second spaced-apart active regions.
Abstract:
One method disclosed herein includes forming a stack of material layers to form gate structures, performing a first etching process to define an opening through the stack of materials that defines an end surface of the gate structures, forming a gate separation structure in the opening and performing a second etching process to define side surfaces of the gate structures. A device disclosed herein includes first and second active regions that include at least one fin, first and second gate structures, wherein each of the gate structures have end surfaces, and a gate separation structure positioned between the gate structures, wherein opposing surfaces of the gate separation structure abut the end surfaces of the gate structures, and wherein an upper surface of the gate separation structure is positioned above an upper surface of the at least one fin.
Abstract:
A semiconductor structure is provided that includes a semiconductor on insulator (SOI) substrate comprising a bottom semiconductor layer, an epitaxial semiconductor layer present on the bottom semiconductor layer, a buried insulator layer present on the epitaxial semiconductor layer, and a top semiconductor layer present on the buried insulator layer. A deep trench moat (DTMOAT) is disposed in the SOI substrate and has a bottom surface contacting a dopant region of the bottom semiconductor layer. A moat contact electrically connecting the DTMOAT to the epitaxial semiconductor layer of the SOI substrate. Charges accumulated in the DTMOAT can be discharged through the heavily doped epitaxial semiconductor layer to ground, thus preventing the DTMOAT failure caused by the process-induced charge accumulation.