Abstract:
A CMP structure for CMP processing and a method of making a device using the same are presented. The apparatus comprises a polishing pad on a platen table; a head assembly for holding a wafer against the polishing pad, wherein the head assembly includes the retaining ring; a sensor for sensing the step height between the retaining ring and its membrane and a controller for adjusting the movement of the retaining ring based on the step height between the retaining ring and its membrane to ensure the step height remains at a fixed value as the retaining ring wears out.
Abstract:
Integrated circuits and methods for manufacturing the same are provided. An integrated circuit includes a base dielectric layer, a first dielectric layer overlying the base dielectric layer, and a second dielectric layer overlying the first dielectric layer. A first overlay mark is positioned within the first dielectric layer, and a second overlay mark is positioned within the second dielectric layer, where the second overlay mark is offset from the first overlay mark. First and second blocks are positioned within the base dielectric layer, where the first overlay mark directly overlays the first block and the second overlay mark directly overlays the second block.
Abstract:
Methods for fabricating integrated circuits having improved active regions are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate having an upper surface and including active regions and isolation regions formed in a low voltage device area and in a high voltage device area. The method includes selectively forming voids between the isolation regions and the active regions in the high voltage device area to expose active side surfaces. The method further includes oxidizing the upper surface and the active side surfaces to form a gate oxide layer over the low voltage device area and the high voltage device area.
Abstract:
Integrated circuits with reduced shorting and methods for fabricating such integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes depositing a gap fill dielectric overlying a semiconductor substrate. The gap fill dielectric is formed with an upper surface having a height differential. The method includes reducing the height differential of the upper surface of the gap fill dielectric. Further, the method includes depositing an interlayer dielectric overlying the gap fill dielectric. Also, the method forms an electrical contact to a selected location overlying the semiconductor substrate.
Abstract:
Integrated circuits having nickel silicide contacts and methods for fabricating integrated circuits with nickel silicide contacts are provided. An exemplary method for fabricating an integrated circuit includes providing a semiconductor substrate and forming a nonvolatile memory structure over the semiconductor substrate. The nonvolatile memory structure includes a gate surface. The method further includes depositing a nickel-containing material over the gate surface. Also, the method includes annealing the nonvolatile memory structure and forming a nickel silicide contact on the gate surface from the nickel-containing material.
Abstract:
Methods of forming a semiconductor device are presented. The method includes providing a wafer with top and bottom wafer surfaces. The wafer includes edge and non-edge regions. A dielectric layer having a desired concave top surface is provided on the top wafer surface. The method includes planarizing the dielectric layer to form a planar top surface of the dielectric layer. The desired concave top surface of the dielectric layer thicknesses compensates for different planarizing rates at the edge and non-edge regions of the wafer.
Abstract:
Methods for fabricating integrated circuits having improved active regions are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate having an upper surface and including active regions and isolation regions formed in a low voltage device area and in a high voltage device area. The method includes selectively forming voids between the isolation regions and the active regions in the high voltage device area to expose active side surfaces. The method further includes oxidizing the upper surface and the active side surfaces to form a gate oxide layer over the low voltage device area and the high voltage device area.
Abstract:
Integrated circuits and methods for manufacturing the same are provided. An integrated circuit includes a lower electrode overlying a substrate, an insulating layer overlying the lower electrode, and an upper electrode overlying the insulating layer. The lower electrode, the insulating layer, and the upper electrode form a stack having a side surface. A phase change spacer is adjacent to the side surface, where the phase change spacer is electrically connected to the lower electrode and the upper electrode.
Abstract:
A CMP structure for CMP processing and a method of making a device using the same are presented. The apparatus comprises a polishing pad on a platen table, a head assembly for holding a wafer against the polishing pad, wherein the head assembly includes a retaining ring, a sensor for sensing the depth of grooves on the retaining ring and a controller for determining an update pressure to apply to the retaining ring based on the depth of the grooves and applying the updated pressure to the retaining ring during processing.
Abstract:
A device and methods for forming the device are disclosed. The method includes providing a substrate. A gate having a gate electrode and sidewall spacers are formed adjacent to sidewalls of the gate. A height HG of the gate is lower than a height HS of the sidewall spacers. A metal or metal alloy layer is deposited over the spacers, gate and the substrate. The substrate is processed to form metal silicide contact at least over the gate electrode. A top surface of the metal silicide contact over the gate electrode is about coplanar with a top of the sidewall spacer, and the difference between the height of the gate and spacers prevent formation of metal silicide filaments on top of the sidewall spacers.