摘要:
A semiconductor device such as a laser diode grown on a structured substrate surface having horizontal regions and adjacent inclined sidewall surfaces. The horizontal regions are of standard orientation while the inclined surfaces are misoriented. The layers forming the device are grown on top of a structured surface, with at least the active layer of the semiconductor material assuming an ordered state which depends on the orientation of the substrate surface. The center section of the active layer is deposited on top of a horizontal region. This section is in the ordered state and has a lower bandgap energy than the terminating sections which are grown on the inclined regions and which exhibit a wider bandgap. The active layer can be terminated in either lateral direction with wider bandgap materials so that buried devices can be obtained that provide strongly confined and non-absorbing mirrors.
摘要:
As will be described in more detail hereinafter, there is disclosed herein a titanium nitride diffusion barrier layer and associated method for use in non-silicon semiconductor technologies. In one aspect of the invention, a semiconductor device includes a non-silicon active surface. The improvement comprises an ohmic contact serving to form an external electrical connection to the non-silicon active surface in which the ohmic contact includes at least one layer consisting essentially of titanium nitride. In another aspect of the invention, a semiconductor ridge waveguide laser is disclosed which includes a semiconductor substrate and an active layer disposed on the substrate. A cladding layer is supported partially on the substrate and partially on the active layer. The cladding layer includes a ridge portion disposed in a confronting relationship with the active region. A metallization structure substantially covers the ridge portion and includes at least one layer consisting essentially of titanium nitride.
摘要:
A method, and devices produced therewith, for the epitaxial growth of sub-micron semiconductor structures with at least one crystal plane-dependently grown, buried active layer (24) consisting of a III-V compound. The active layer (24) and adjacent embedding layers (23, 25) form a heterostructure produced in a one-step growth process not requiring removal of the sample from the growth chamber in between layer depositions. The layers of the structure are grown on a semiconductor substrate (21) having a structured surface exposing regions of different crystal orientation providing growth and no-growth-planes for the selective growth process. The method allows the production of multiple, closely spaced active layers and of layers consisting of adjoining sections having different physical properties.
摘要:
A process for forming the ridge structure of a self-aligned InP-system, double heterostructure (DH) laser, particularly useful for long wavelength devices as required for signal transmission systems includes a thin Si.sub.3 N.sub.4 layer (41) inserted between a photoresist mask (42) that defines the ridge structure, and a contact layer (35). Using a Si.sub.3 N.sub.4 layer (4) deposited at a high plasma excitation frequency (RF) for adhesion promotion, and a low frequency deposited (LF) Si.sub.3 N.sub.4 layer (43) for device embedding, provides for the etch selectively required in the process step that is used to expose the contact layer to ohmic contact metallization deposition.