摘要:
The present invention provides a method of production of electric resistance welded steel pipe able to stably reduce weld defects due to oxides by firing plasma and furthermore able to reduce plasma jet noise and comprises shaping steel plate 1 into a tube and electric resistance welding the abutting end faces 4 during which blowing on at least the abutting end faces 4a in the region 6 at the welding upstream side from the weld point 9 where the temperature becomes 650° C. or more a reducing high temperature (pseudo) laminar plasma obtained by applying voltage to a reducing gas containing H2 gas: 2 to 50 vol % to which is added a balance of Ar gas alone or a mixed gas of Ar gas to which N2 gas, He gas, or both are added. At that time, it is preferable to make the applied voltage over 120V and the make the plasma blowing conditions satisfy the following formula (1). 150
摘要:
The present invention provides a method of production of electric resistance welded steel pipe able to stably reduce weld defects due to oxides by firing plasma and furthermore able to reduce plasma jet noise and comprises shaping steel plate 1 into a tube and electric resistance welding the abutting end faces 4 during which blowing on at least the abutting end faces 4a in the region 6 at the welding upstream side from the weld point 9 where the temperature becomes 650° C. or more a reducing high temperature (pseudo) laminar plasma obtained by applying voltage to a reducing gas containing H2 gas: 2 to 50 vol % to which is added a balance of Ar gas alone or a mixed gas of Ar gas to which N2 gas, He gas, or both are added. At that time, it is preferable to make the applied voltage over 120V and the make the plasma blowing conditions satisfy the following formula (1). 150
摘要翻译:本发明提供一种电阻焊钢管的制造方法,其能够通过点火等离子体稳定地减少由于氧化物引起的焊接缺陷,并且还能够降低等离子体射流噪声,并且包括将钢板1成形为管,并且将邻接端 至少在熔点为熔点高于650℃的焊接点的焊接上游侧的区域6中的至少碰撞端面4a或更多的是通过施加电压而获得的还原高温(伪)层流等离子体 涉及含有H2气体的还原气体:2〜50体积%,添加余量的Ar气体或添加有N 2气体,He气体或二者的Ar气体的混合气体。 此时,优选使施加电压超过120V,使等离子体吹送条件满足下式(1)。 150 <4×(ΣG i M i)&pgr; ×D×μava,T = 7000 <400 <1>
摘要:
[Summary][Object] There are provided electric resistance welded oil country tubular goods having strength corresponding to API specification 5CT P110 without a heat treatment being performed on the whole steel pipe and further having excellent toughness, and a manufacturing method of an electric resistance welded oil country tubular goods.[Solution] Electric resistance welded oil country tubular goods according to the present invention have a chemical composition that contains, in mass %, C: 0.05 to 0.12%, Si: 0.03 to 0.5%, Mn: 0.80 to 2.2%, P: 0.03% or less, S: 0.003% or less, Al: 0.08% or less, Nb: 0.01% to 0.10%, Ti: 0.005 to 0.03%, B: 0.0005 to 0.0030%, and N: 0.008% or less, and in which Ti>3.4 N is satisfied, its balance is composed of Fe and inevitable impurities, and, VC90 is 15 to 40.
摘要:
The present invention provides a line pipe of, e.g., the API standard X60 to X100 class. The line pipe has an excellent deformability, as well as excellent low temperature toughness and high productivity, a steel plate used as the material of the steel pipe. Methods for producing the steel pipe and the steel plate are also provided. In particular, a high-strength steel plate excellent in the deformability has a ferrite phase is dispersed finely, and accounts for 5% to 40% in area percentage in a low temperature transformation structure mainly composed of a bainite phase. For example, most grain sizes of the ferrite phase are smaller than the average grain size of the bainite phase. A high-strength steel pipe excellent in deformability is also provided, in which a large diameter steel pipe is produced through forming the steel plate into a pipe shape. The steel pipe has the above-referenced structure, and satisfies the conditions that YS/TS is 0.95 or less and YS×uEL is 5,000 or more. Methods for producing such steel plate and steel pipe are also provided.
摘要:
The present invention, in a welded joint of steel sheets and a steel pipe body having a tensile strength of 800 MPa or more (over X100 in API Standards), provides: the welded joint of the steel sheets and the steel pipe produced by forming a steel sheet into a cylindrical shape and welding both the ends thereof, both excellent in cold cracking resistance; and methods for producing them. The present invention includes an ultrahigh strength welded joint and an ultrahigh strength welded steel pipe excellent in the cold cracking resistance of a weld metal, characterized in that the amount of non-diffusible hydrogen in the inner side weld metal is 0.01 ppm or more. It is preferable that the ratio of the non-diffusible hydrogen amount to the total hydrogen amount in said inner side weld metal is 0.5% or more. Further, it is preferable that Mo carbide is contained by not less than 1 piece/μm2 in said inner side weld metal. The present invention also includes a method for producing said welded joint and welded steel pipe, characterized by welding the butted portion from the inner side and thereafter welding it from the outer side so that the reheating temperature of the inner side weld metal may reach within the range from 500° C. to 700° C.
摘要:
The present invention, in a welded joint of steel sheets and a steel pipe body having a tensile strength of 800 MPa or more (over X100 in API Standards), provides: the welded joint of the steel sheets and the steel pipe produced by forming a steel sheet into a cylindrical shape and welding both the ends thereof, both excellent in cold cracking resistance; and methods for producing them. The present invention includes an ultrahigh strength welded joint and an ultrahigh strength welded steel pipe excellent in the cold cracking resistance of a weld metal, characterized in that the amount of non-diffusible hydrogen in the inner side weld metal is 0.01 ppm or more. It is preferable that the ratio of the non-diffusible hydrogen amount to the total hydrogen amount in said inner side weld metal is 0.5% or more. Further, it is preferable that Mo carbide is contained by not less than 1 piece/μm2 in said inner side weld metal. The present invention also includes a method for producing said welded joint and welded steel pipe, characterized by welding the butted portion from the inner side and thereafter welding it from the outer side so that the reheating temperature of the inner side weld metal may reach within the range from 500° C. to 700° C.
摘要:
The present invention provides high strength steel plate with excellent low temperature toughness, high strength steel pipe using this as a base metal, and methods of production of the same. The steel plate of the present invention contains Mo: 0.05 to 1.00% and B: 0.0003 to 0.0100%, has a Ceq of 0.30 to 0.53, has a Pcm of 0.10 to 0.20, and has a metal structure which has an area percentage of polygonal ferrite of 20 to 90% and has a balance of a hard phase comprised of one or both of bainite and martensite. To obtain this steel plate, strain-introducing rolling is performed with a start temperature of not more than Ar3+60° C., an end temperature of Ar3 or more, and a reduction ratio of 1.5 or more, then the plate is air-cooled and then acceleratedly cooled from Ar3−100° C. to Ar3−10° C. in temperature by 10° C./s or more.
摘要:
The present invention provides high strength thick welded steel pipe for line pipe superior in low temperature toughness, and a method of production of the same. A base material steel plate containing C: 0.010 to 0.050%, Si: 0.01 to 0.50%, Mn: 0.50 to 2.00%, Al: 0.020% or less, Ti: 0.003 to 0.030%, and Mo: 0.10 to 1.50%, having a carbon equivalent Ceq of 0.30 to 0.53, having a crack susceptability parameter Pcm of 0.10 to 0.20, satisfying formula 3, comprised an area ratio of 20% or less of polygonal ferrite and an area ratio of 80% or more of bainite, and having an effective crystal grain size of 20 μm or less is formed into a pipe shape, then seam welded to make the effective crystal grain size of the heat affected zone 150 μm or less: 10C+100Al+5Mo+5Ni
摘要:
A method is provided for producing an ultra-high strength steel having a tensile strength of at least about 900 MPa (130 ksi), a toughness as measured by Charpy V-notch impact test at −40° C. (−40° F.) of at least about 120 joules (90 ft-lbs), and a microstructure comprising predominantly fine-grained lower bainite, fine-grained lath martensite, or mixtures thereof, transformed from substantially unrecrystallized austenite grains and comprising iron and specified weight percentages of the additives: carbon, silicon, manganese, copper, nickel, niobium, vanadium, molybdenum, chromium, titanium, aluminum, calcium, Rare Earth Metals, and magnesium. A steel slab is heated to a suitable temperature; the slab is reduced to form plate in one or more hot rolling passes in a first temperature range in which austenite recrystallizes; said plate is further reduced in one or more hot rolling passes in a second temperature range below said first temperature range and above the temperature at which austenite begins to transform to ferrite during cooling; said plate is quenched to a suitable Quench Stop Temperature; and said quenching is stopped and said plate is allowed to air cool to ambient temperature.
摘要:
An object of the present invention is to provide a corrosion resistant steel excellent in strength and low temperature toughness as well as resistance to corrosion by carbon dioxide and seawater, and most suitable for oil well steel pipes and line pipes for production and transportation of gas, petroleum, etc. used in the field of energy, or a steel for plants, and corrosion resistant oil well steel pipes. The corrosion resistant steel and the corrosion resistant oil well steel pipes comprise, based on weight, up to 0.30% of C, up to 1.0% of Si, 0.2 to 2.0% of Mn, 2.1 to less than 5.0% of Cr, up to 0.03% of P, up to 0.02% of S, up to 0.10% of Al, up to 0.015% of N, optionally containing Cu, Ni, Mo, Ti, Nb and B, and the balance of Fe and unavoidable impurities, and have a martensitic structure as their metallic structure.