摘要:
With recent decreases in the size of semiconductor memories, isolation problems typically arise during fabrication of a capacitor for a high-capacity semiconductor memory device. To overcome this, arrangements are provided to improve the isolation between capacitor elements even if those elements are extremely close together. For example, if a material such as platinum is used as a capacitor bottom electrode, a thin layer of titanium oxide can be deposited before forming the platinum, to provide a structure in which the titanium oxide is on the bottom portion of the trench. A high-dielectric-constant insulator is then formed over that structure by the Chemical Vapor Deposition. The high-dielectric-constant insulator has a composition which satisfies the stoichiometric composition over the platinum and which has more titanium atoms than those of the stoichiometric composition on the trench bottom. The resulting non-stoichiometric composition layer formed on the trench bottom has a low dielectric constant and a high insulation to maintain electric insulation between adjoining bottom capacitor electrodes. Because of a low crystallization, moreover, a layer having a planarized morphology is formed.
摘要:
A microminiature, large capacitor for a semiconductor memory is formed from a raw material compound of plural different kinds of metal atoms for deposition, irrespective of the material, temperature and surface condition of a substrate, thereby forming a thin dielectric film having uniform characteristics not affected by the interface even though the film is made as thin as approximately 0.1 .mu.m. The microminiature large capacitance capacitor has a capacitance unaffected by an oxide existing at the interface between a ferroelectric and electrodes without using precious metals such as platinum having the least degree of freedom in deposition of thin films and microminiature processing. The ferroelectric thin film is deposited using an organic metal comprising a plurality of kinds of metal elements in conformity with the composition of a desired dielectric. As electrodes for use in forming a capacitor, a substance exhibiting conductivity after oxidation is preferably employed.
摘要:
With recent decreases in the size of semiconductor memories, isolation problems typically arise during fabrication of a capacitor for a high-capacity semiconductor memory device. To overcome this, arrangements are provided to improve the isolation between capacitor elements even if those elements are extremely close together. For example, if a material such as platinum is used as a capacitor bottom electrode, a thin layer of titanium oxide can be deposited before forming the platinum, to provide a structure in which the titanium oxide is on the bottom portion of the trench. A high-dielectric-constant insulator is then formed over that structure by the Chemical Vapor Deposition. The high-dielectric-constant insulator has a composition which satisfies the stoichiometric composition over the platinum and which has more titanium atoms than those of the stoichiometric composition on the trench bottom. The resulting non-stoichiometric composition layer formed on the trench bottom has a low dielectric constant and a high insulation to maintain electric insulation between adjoining bottom capacitor electrodes. Because of a low crystallization, moreover, a layer having a planarized morphology is formed.
摘要:
A sputtering apparatus including a target holder configured to hold at least two targets; a substrate holder configured to hold a substrate; a first shutter plate arranged between the target holder and the substrate holder, the first shutter plate having at least two holes and being capable of rotating around an axis; a second shutter plate arranged between the first shutter plate and the substrate holder, the second shutter plate having at least two holes and being capable of rotating around the axis; wherein the first and second shutter plates are rotated such that paths are simultaneously created between the at least two targets and the substrate through the at least two holes of the rotated first shutter plate and the at least two holes of the rotated second shutter plate, and a film is formed on the substrate by co-sputtering of the at least two targets.
摘要:
HfO2 films and ZrO2 films are currently being developed for use as capacitor dielectric films in 85 nm technology node DRAM. However, these films will be difficult to use in 65 nm technology node or later DRAM, since they have a relative dielectric constant of only 20-25. The dielectric constant of such films may be increased by stabilizing their cubic phase. However, this results in an increase in the leakage current along the crystal grain boundaries, which makes it difficult to use these films as capacitor dielectric films. To overcome this problem, the present invention dopes a base material of HfO2 or ZrO2 with an oxide of an element having a large ion radius, such as Y or La, to increase the oxygen coordination number of the base material and thereby increase its relative dielectric constant to 30 or higher even when the base material is in its amorphous state. Thus, the present invention provides dielectric films that can be used to form DRAM capacitors that meet the 65 nm technology node or later.
摘要:
To achieve a higher operating speed, higher reliability, and lower power consumption by reducing the thickness of an inter-poly silicon insulator film between a floating gate and a control gate of a flash memory, a silicon dioxide film, a silicon nitride film, tantalum pentoxide, and a silicon dioxide film are formed in a multilayer structure to serve as the inter-poly insulator film between a floating gate and a control gate. With this configuration, tantalum pentoxide formed on the silicon nitride film has a dielectric constant of 50 or more, which is higher than that of the silicon dioxide film, and the thickness of the inter-poly silicon insulator film can be reduced.
摘要:
It is an object of the present invention to provide a fine memory cell structure preventing a reaction between an interlayer insulating film and a ferroelectric film and suitable for high integration. According to the invention, there is provided a structure in which a reaction barrier film 43 is interposed between a ferroelectric film 71 and an interlayer insulating film 32 and side walls of a diffusion barrier film 51 are not brought into direct contact with the ferroelectric film 71. Thereby, the reaction between the interlayer insulating film 32 and the ferroelectric film 71 can be restrained and exfoliation of the ferroelectric film 71 can be prevented.
摘要:
A semiconductor device includes a capacitor having a lower electrode (102), a high-dielectric-constant or ferroelectric thin film (103), and an upper electrode (104) which are subsequently stacked. An impurity having an action of suppressing the catalytic activity of a metal or a conductive oxide constituting the electrode is added to the upper electrode (104). The addition of the impurity is effective to prevent inconveniences such as a reduction in capacitance, an insulation failure, and the peeling of the electrode due to hydrogen heat-treatment performed after formation of the upper electrode (104), and to improve the long-term reliability.
摘要:
A semiconductor integrated circuit in which the storage capacitor has an increased capacitance and a decreased leakage current. The storage capacitor is formed by the steps of: forming a polysilicon bottom electrode having semispherical silicon crystals formed thereon; performing plasma nitriding on the surface of said bottom electrode at a temperature lower than 550° C., thereby forming a film of silicon nitride having a film thickness smaller than 1.5 nm; and depositing a film of amorphous tantalum pentoxide and then crystallizing said amorphous tantalum pentoxide. The silicon nitride film has improved resistance to oxidation and also has a reduced leakage current. As a result, the polysilicon bottom electrode becomes resistant to oxidation and the storage capacitor increases in capacitance and decreases in leakage current.
摘要:
A diffusion preventive layer extending between the bottom surface of a lower electrode and an interconnection connecting the lower electrode to one of the diffusion layer of a switching transistor is self-aligned. As a result, side trench is produced since a hole pattern is formed by using a dummy film, and even if a contact plug of a memory section is misaligned with the diffusion preventive layer, the contact plug is out of direct contact with a dielectric film having a high permittivity. Hence, a highly reliable device can be obtained.