摘要:
A single-substrate-processing CVD apparatus is used for forming a BST thin film on a semiconductor wafer while supplying a first process gas containing a mixture of Ba(thd).sub.2 and Sr(thd).sub.2, and a second process gas containing Ti(O-iPr)(thd).sub.2 or Ti(thd).sub.2. Precursors of Ba and Sr have lower activation energies and higher resistivities than precursors of Ti. The first and second process gases are supplied from a shower head which has a group of first spouting holes for spouting the first process gas and a group of second spouting holes for spouting the second process gas. The group of the second spouting holes are designed to have diameters gradually decreasing in radial directions outward from the center of a shower region, such that the second process gas is supplied at a spouting rate gradually decreasing in radial directions outward from the center.
摘要:
A single-substrate-processing CVD apparatus is used for forming a BST thin film on a semiconductor wafer while supplying a first process gas containing a mixture of Ba(thd)2 and Sr(thd)2, and a second process gas containing Ti(O-iPr)(thd)2 or Ti(thd)2. Precursors of Ba and Sr have lower activation energies and higher resistivities than precursors of Ti. The first and second process gases are supplied from a shower head which has a group of first spouting holes for spouting the first process gas and a group of second spouting holes for spouting the second process gas. The group of the second spouting holes are designed to have diameters gradually decreasing in radial directions outward from the center of a shower region, such that the second process gas is supplied at a spouting rate gradually decreasing in radial directions outward from the center.
摘要:
In a metal oxide film formation method, a source gas mixture of organic compound gases containing at least three metals, and an oxidation gas are individually prepared. While the substrate is heated, the oxidation gas is supplied to a substrate set in a closed vessel at a predetermined pressure, and then the gas mixture is supplied. A metal oxide film is formed on the substrate. A metal oxide film formation apparatus is also disclosed.
摘要:
In a thin film forming method of the invention, an atmosphere for a base as a thin film forming target is set to a high vacuum of, e.g., 0.01 Torr or less, and a gas of an organometallic compound and an oxidizing gas are introduced onto a base surface heated to about 450° C., to form a plurality of crystal nuclei, made of an oxide of a metal constituting the organometallic compound, on the base surface. The atmosphere for the base is then set to a lower vacuum than the first vacuum degree, and the gas of the organometallic compound and the oxidizing gas are subsequently introduced onto the base surface heated to about 45° C., to form a film made of the oxide of the metal there. In the above process, in the first step, the vacuum degree is set to a vacuum degree at which the oxide of the metal is formed by crystal growth on surfaces of different materials at the first temperature, and the plurality of crystal nuclei are formed at a high density so that a crystal grain which is formed by growing a crystal nucleus comes into contact with a crystal grain growing from an adjacent crystal nucleus. In the subsequent step, the temperature for the base is set to less than a temperature at which the oxide of the metal is formed by crystal growth on the surfaces of the different materials.
摘要:
A method for liquefying a feed gas stream. A refrigerant stream is cooled and expanded to produce an expanded, cooled refrigerant stream. Part or all of the expanded, cooled refrigerant stream is mixed with a make-up refrigerant stream in a separator, thereby condensing heavy hydrocarbon components from the make-up refrigerant stream and forming a gaseous expanded, cooled refrigerant stream. The gaseous expanded, cooled refrigerant stream passes through a heat exchanger zone to form a warm refrigerant stream. The feed gas stream is passed through the heat exchanger zone to cool at least part of the feed gas stream by indirect heat exchange with the expanded, cooled refrigerant stream, thereby forming a liquefied gas stream. The warm refrigerant stream is compressed to produce the compressed refrigerant stream.
摘要:
Process and systems for converting lower molecular weight alkanes to higher molecular weight hydrocarbons that include fractionation of brominated hydrocarbons, wherein the brominated hydrocarbons are formed by reaction of the lower molecular weight alkanes with bromine.
摘要:
The present invention discloses an apparatus for baking a glass substrate, which includes: a baking oven, a support component, a temperature sensing device, a heating device, a cooling device, and a temperature controlling device. The present invention further discloses a method for baking a glass substrate. The present invention is capable of dynamically controlling the temperature of the support component, which contacts the glass substrate. The temperature of the glass substrate keeps identical and the temperature of the support component keep identical, so as to prevent a Mura defect appearing on the glass substrate.
摘要:
Process and systems for converting lower molecular weight alkanes to higher molecular weight hydrocarbons that include recovery of residual halogenated hydrocarbons (e.g., CH3Br) from higher molecular weight hydrocarbon products.
摘要:
Process and systems for converting lower molecular weight alkanes to higher molecular weight hydrocarbons that include demethanization of brominated hydrocarbons, wherein the brominated hydrocarbons are formed by reaction of the lower molecular weight alkanes with bromine.
摘要:
A method is disclosed for start-up of a system for liquefying a feed gas stream comprising natural gas. The system has a feed gas compression and expansion loop, and a refrigerant system comprising a primary cooling loop and a sub-cooling loop. The feed gas compression and expansion loop is started up. The refrigerant system is pressurized. Circulation in the primary cooling loop is started and established. Circulation in the sub-cooling loop is started and established. A flow rate of the feed gas stream and circulation rates of the primary cooling loop and the sub-cooling loop are ramped up.