摘要:
A solid state imaging device has: a first polysilicon layer 901; a second polysilicon layer 902; a photoelectric converting portion or PD 903; a read gate 904; a read channel 905 (in this case, an N-layer) which is formed in a semiconductor below the read gate; a P-layer 906 which prevents a signal charge from erroneously entering a VCCD of a unit pixel adjacent in a horizontal direction; a P-layer 907 which defines the transfer channel region of a VCCD; and a VCCD 908 which transfers a signal charge in the direction of the arrows. A unit pixel 900 is indicated by a one-dot chain line. The two-dimensionally arrayed solid state imaging device is driven by driving pulses of eight phases in total, namely, a driving pulse &phgr;V1 911, a driving pulse &phgr;V2 912, a driving pulse &phgr;V3 913, a driving pulse &phgr;V4 914, a driving pulse &phgr;V5 915, a driving pulse &phgr;V6 916, a driving pulse &phgr;V7 917, and a driving pulse &phgr;V8 918.
摘要:
A charge transfer device is provided, which includes: a semiconductor substrate having transfer regions for transferring a signal charge; an insulating film formed on the semiconductor substrate; an electrode layer formed above the transfer regions with the insulating film sandwiched therebetween, the electrode layer having high-resistant portions and low-resistant portions alternately provided; and voltage application means for applying a voltage for changing a surface potential of the transfer regions to the low-resistant portions of the electrode layer.
摘要:
A solid-state image pick-up device having a structure in which the amount of transferred charges is not reduced in a vertical CCD portion even if a pixel portion is made finer, and a method for manufacturing the solid-state image pick-up device are provided. A first p-type well and a second p-type well are formed on an N (100) silicon substrate. A vertical CCD n.sup.+ layer is formed in the second p-type well 3. Then, impurity ions are implanted into a surface layer of the N (100) silicon substrate including an upper layer portion of the vertical CCD n.sup.+ layer to form a p.sup.- layer. An isolating portion for isolating photodiode portions from the vertical CCD n.sup.+ layer and a read control portion for controlling the read of charges from the photodiode n layer are simultaneously formed on a portion adjacent to the vertical CCD n.sup.+ layer.
摘要:
A solid-state image pick-up device having a structure in which the amount of transferred charges is not reduced in a vertical CCD portion even if a pixel portion is made finer, and a method for manufacturing the solid-state image pick-up device are provided. A first p-type well and a second p-type well are formed on an N (100) silicon substrate. A vertical CCD n.sup.+ layer is formed in the second p-type well 3. Then, impurity ions are implanted into a surface layer of the N (100) silicon substrate including an upper layer portion of the vertical CCD n.sup.+ layer to form a p.sup.- layer. An isolating portion for isolating photodiode portions from the vertical CCD n.sup.+ layer and a read control portion for controlling the read of charges from the photodiode n layer are simultaneously formed on a portion adjacent to the vertical CCD n.sup.+ layer.
摘要翻译:具有如下结构的固体摄像装置,即使像素部分变得更细,在垂直CCD部分中转印电荷量也不会减少的结构,以及制造固态图像拾取装置的方法 被提供。 在N(100)硅衬底上形成第一p型阱和第二p型阱。 在第二p型阱3中形成垂直CCD n +层。然后,将杂质离子注入到包括垂直CCD n +层的上层部分的N(100)硅衬底的表面层中, 层。 与垂直CCD n +层隔离光电二极管部分的隔离部分和用于控制从光电二极管n层读取电荷的读取控制部分同时形成在与垂直CCD n +层相邻的部分上。
摘要:
Photoelectric transducing elements are formed in a first impurity-doped region (14), and signal charge reading-out circuits (2, 3) are formed in a second impurity-doped region which is deeper than the first impurity-doped region, so that fixed pattern noise is drastically reduced, improving picture quality.
摘要:
In a semiconductor device 10 including a structure where transfer electrodes 2a to 2c are disposed on a semiconductor substrate 1 via an insulation layer 3, a first semiconductor region 4 of a first conductivity type, a second semiconductor region 5 of a conductivity type opposite to the first conductivity type, and a third semiconductor region 6 of the first conductivity type in a position that overlaps a region of the semiconductor substrate 1 directly underneath the transfer electrodes 2a to 2c. The second semiconductor region 5 is formed on the first semiconductor region 4. The third semiconductor region 6 is formed on the second semiconductor region 5 so that a position of a maximal point 8 of electric potential of the second semiconductor region 5 when being depleted is deeper than a position of the maximal point 8 in a case where the third semiconductor region 6 does not exist.
摘要:
In making solid state imaging devices smaller and increasing their number of pixels, it is desirable to increase the charge amount that can be handled per unit area of the transfer portions. It is possible to achieve this by making the insulating film thinner, but this leads to electric fields in the semiconductor substrate that are too strong, and causes problems such as the generation of noise and the deterioration of the transfer efficiency. This invention relaxes potential steps in the transfer region by applying, when a signal charge 1 is being read out (t=t2), a high voltage to the electrode 43 for reading out the signal charge, a low voltage to at least one of the electrodes 41, 45-47 for preventing unnecessary mixing of signal charges, and an intermediate voltage between the high voltage and the low voltage to the electrodes 42 and 44, which are adjacent to the electrode 43 to which the high voltage is applied.
摘要翻译:在使固态成像装置更小并且其像素数量增加的情况下,期望增加可以在转印部分的每单位面积处理的电荷量。 可以通过使绝缘膜更薄而实现这一点,但是这导致半导体衬底中的电场太强,并且引起噪声的产生和传输效率的劣化等问题。 本发明通过在读出信号电荷1(t = t 2 2)时施加向读出信号电荷的电极43施加的高电压,放松了转印区域中的潜在步骤, 低电压至至少一个电极41,45-47,用于防止信号电荷的不必要的混合,以及与电极43相邻的电极42和44的高电压和低电压之间的中间电压, 施加高电压。
摘要:
Disclosed is a semiconductor device comprising an undoped GaAs layer, an intermediate undoped layer and an undoped Ga.sub.1-x Al.sub.x As layer which are successively provided on a substrate made of a semiinsulating GaAs crystal; the intermediate undoped layer being an undoped In.sub.y Ga.sub.1-y As layer, an undoped GaAs.sub.1-z Sb.sub.z layer, a superlattice layer which includes an undoped In.sub.y Ga.sub.1-y As layer and an undoped GaAs.sub.1-z Sb.sub.z layer, a superlattice layer which includes an undoped In.sub.y Ga.sub.1-y As layer and an undoped GaAs layer, or a superlattice layer which includes an undoped GaAs.sub.1-z Sb layer and an undoped GaAs layer. When applied to a high electron mobility transistor, this semiconductor device affords a high current and a high speed and has the merit of a small dispersion in the threshold voltage thereof.
摘要:
The present invention relates to a charge transfer device having high transfer efficiency without leaving over signal charges, a charge transfer device substantially shortened in the gate length so as to enhance the transfer speed, and a method of manufacturing and a method of driving such device. In the charge transfer device of the invention, the n.sup.- diffusion layer is formed on the semiconductor substrate. In the surface region of the n.sup.- diffusion layer, a plurality of n diffusion layers are formed at equal intervals. The interval of the adjacent n diffusion layers is about 5 to 10 .mu.m. On the n.sup.- diffusion layer, an insulation film is formed. On the insulation film, transfer electrodes having two different shapes are formed. The transfer electrodes of these two types are alternately arranged. These transfer electrodes differ in length. The length of the longer transfer electrodes is about twice the length of the shorter transfer electrodes. Furthermore, the right end of the n diffusion layer nearly coincides with the right end of the longer transfer electrodes formed on the gate oxide film in the spatial position.
摘要:
A solid state image sensing device which transfers unnecessary signal charges accumulated at photoelectric conversion devices by a first charge pulse in a vertical blanking period to vertical transferring means and throws out the unnecessary signal charges using throw-away means. The necessary signal charges accumulated in the photoelectric conversion devices in such period after the first charge pulse are transferred by a second charge pulse to the vertical transferring means, a horizontal transferring means and a signal detecting means, thereby to issue a video signal.