摘要:
Example embodiments relate to a capacitor, a method of forming the same, a semiconductor device having the capacitor and a method of manufacturing the same. Other example embodiments are directed to a capacitor having an upper electrode structure including a first upper electrode and a second upper electrode, a method of forming the same, a semiconductor device having the capacitor and a method of manufacturing the same. In a method of forming a capacitor, a lower electrode may be formed on a substrate, and then a dielectric layer may be formed on the lower electrode. An upper electrode structure may be formed on the dielectric layer. The upper electrode structure may include a first upper electrode and a second upper electrode. The second upper electrode may include at least two of a silicon layer, a first silicon germanium layer and a second silicon germanium layer doped with p-type impurities. The upper electrode structure may be formed without generating voids between the dielectric layer and the upper electrode structure. The capacitor and the semiconductor device having the upper electrode structure may have improved electrical characteristics.
摘要:
Example embodiments relate to a capacitor, a method of forming the same, a semiconductor device having the capacitor and a method of manufacturing the same. Other example embodiments are directed to a capacitor having an upper electrode structure including a first upper electrode and a second upper electrode, a method of forming the same, a semiconductor device having the capacitor and a method of manufacturing the same. In a method of forming a capacitor, a lower electrode may be formed on a substrate, and then a dielectric layer may be formed on the lower electrode. An upper electrode structure may be formed on the dielectric layer. The upper electrode structure may include a first upper electrode and a second upper electrode. The second upper electrode may include at least two of a silicon layer, a first silicon germanium layer and a second silicon germanium layer doped with p-type impurities. The upper electrode structure may be formed without generating voids between the dielectric layer and the upper electrode structure. The capacitor and the semiconductor device having the upper electrode structure may have improved electrical characteristics.
摘要:
Example embodiments relate to a capacitor including p-type doped silicon germanium and a method of manufacturing the capacitor. The capacitor may include a lower electrode, a dielectric layer, an upper electrode, a barrier layer and a capping layer. The lower electrode may have a cylindrical shape. The dielectric layer may be on the lower electrode. The dielectric layer may have a uniform thickness. The upper electrode may be on the dielectric layer. The upper electrode may have a more uniform thickness. The capping layer may be on the upper electrode. The capping layer may include a silicon germanium layer doped with p-type impurities. The barrier layer may be between the upper electrode and the capping layer to prevent (or reduce) the p-type impurities from infiltrating into the dielectric layer.
摘要:
A pad structure, a method of forming a pad structure, a semiconductor device having a pad structure and a method of manufacturing a semiconductor device are disclosed. The pad structure may include a first pad, a second pad, a third pad and/or a spacer. The first pad may contact a contact region on a substrate. The first pad may include doped polysilicon. The second pad may contact the first pad. The second pad may include a metal silicide or a metal silicongermanium. The third pad may contact the second pad. The third pad may include a conductive material (e.g., doped polysilicon, a metal or a metal nitride). The spacer may be formed on sidewalls of the second and the third pads.
摘要:
A first gate oxide layer pattern having a first thickness is formed in a first region of a substrate and a second gate oxide layer having a second thickness is formed in a second region of a substrate. A surface of the second gate oxide layer is selectively nitrified to form an oxynitride layer, thereby reducing a depletion effect of a poly gate and a fluctuation of threshold voltage.
摘要:
A semiconductor device including a stacked gate having stacked gate sidewalls and an oxide/nitride/oxide (ONO) interlayer dielectric is manufactured by pre-annealing the stacked gate in a first atmosphere that includes nitrogen. At least a portion of the stacked gate sidewalls of the stacked gate that has been pre-annealed is oxidized. Post-annealing is then performed on the stacked gate including the stacked gate sidewalls that have been oxidized, in a second atmosphere that includes nitrogen.
摘要:
A method of forming a gate structure includes forming a tunnel insulation layer pattern on a substrate, forming a floating gate on the tunnel insulation layer pattern, forming a dielectric layer pattern on the floating gate, the dielectric layer pattern including a first oxide layer pattern, a nitride layer pattern on the first oxide layer pattern, and a second oxide layer pattern on the nitride layer pattern, the second oxide layer pattern being formed by performing an anisotropic plasma oxidation process on the nitride layer, such that a first portion of the second oxide layer pattern on a top surface of the floating gate has a larger thickness than a second portion of the second oxide layer pattern on a sidewall of the floating gate, and forming a control gate on the second oxide layer.
摘要:
A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
摘要:
In accordance with a method of trench isolation, a first oxide layer is formed on a semiconductor substrate. A first conductive layer and a nitride layer are successively formed on the first oxide layer. The nitride layer, the first conductive layer and the first oxide layer are etched to form a nitride layer pattern, a first conductive layer pattern and an oxide layer pattern. A portion of the substrate adjacent to the first conductive layer pattern is etched to form a trench in the substrate. The trench is cured under dinitrogen monoxide (N2O) or nitrogen monoxide(NO) atmosphere. A second oxide layer is formed in the trench through an in-situ process.
摘要翻译:根据沟槽隔离的方法,在半导体衬底上形成第一氧化物层。 第一导电层和氮化物层依次形成在第一氧化物层上。 蚀刻氮化物层,第一导电层和第一氧化物层,以形成氮化物层图案,第一导电层图案和氧化物层图案。 蚀刻邻近第一导电层图案的衬底的一部分,以在衬底中形成沟槽。 沟槽在一氧化二氮(N 2 O 2 O)或一氧化氮(NO))气氛下固化。 通过原位工艺在沟槽中形成第二氧化物层。
摘要:
A first gate oxide layer pattern having a first thickness is formed in a first region of a substrate and a second gate oxide layer having a second thickness is formed in a second region of a substrate. A surface of the second gate oxide layer is selectively nitrified to form an oxynitride layer, thereby reducing a depletion effect of a poly gate and a fluctuation of threshold voltage.