摘要:
A method of fabricating a gallium nitride-based semiconductor structure on a substrate includes the steps of forming a mask having at least one opening therein directly on the substrate, growing a buffer layer through the opening, and growing a layer of gallium nitride upwardly from the buffer layer and laterally across the mask. During growth of the gallium nitride from the mask, the vertical and horizontal growth rates of the gallium nitride layer are maintained at rates sufficient to prevent polycrystalline material nucleating on said mask from interrupting the lateral growth of the gallium nitride layer. In an alternative embodiment, the method includes forming at least one raised portion defining adjacent trenches in the substrate and forming a mask on the substrate, the mask having at least one opening over the upper surface of the raised portion. A buffer layer may be grown from the upper surface of the raised portion. The gallium nitride layer is then grown laterally by pendeoepitaxy over the trenches.
摘要:
A method of fabricating a gallium nitride-based semiconductor structure on a substrate includes the steps of forming a mask having at least one opening therein directly on the substrate, growing a buffer layer through the opening, and growing a layer of gallium nitride upwardly from the buffer layer and laterally across the mask. During growth of the gallium nitride from the mask, the vertical and horizontal growth rates of the gallium nitride layer are maintained at rates sufficient to prevent polycrystalline material nucleating on said mask from interrupting the lateral growth of the gallium nitride layer. In an alternative embodiment, the method includes forming at least one raised portion defining adjacent trenches in the substrate and forming a mask on the substrate, the mask having at least one opening over the upper surface of the raised portion. A buffer layer may be grown from the upper surface of the raised portion. The gallium nitride layer is then grown laterally by pendeoepitaxy over the trenches.
摘要:
A method of fabricating a gallium nitride-based semiconductor structure on a substrate includes the steps of forming a mask having at least one opening therein directly on the substrate, growing a buffer layer through the opening, and growing a layer of gallium nitride upwardly from the buffer layer and laterally across the mask. During growth of the gallium nitride from the mask, the vertical and horizontal growth rates of the gallium nitride layer are maintained at rates sufficient to prevent polycrystalline material nucleating on said mask from interrupting the lateral growth of the gallium nitride layer. In an alternative embodiment, the method includes forming at least one raised portion defining adjacent trenches in the substrate and forming a mask on the substrate, the mask having at least one opening over the upper surface of the raised portion. A buffer layer may be grown from the upper surface of the raised portion. The gallium nitride layer is then grown laterally by pendeoepitaxy over the trenches.
摘要:
A method of fabricating a gallium nitride-based semiconductor structure on a substrate includes the steps of forming a mask having at least one opening therein directly on the substrate, growing a buffer layer through the opening, and growing a layer of gallium nitride upwardly from the buffer layer and laterally across the mask. During growth of the gallium nitride from the mask, the vertical and horizontal growth rates of the gallium nitride layer are maintained at rates sufficient to prevent polycrystalline material nucleating on said mask from interrupting the lateral growth of the gallium nitride layer. In an alternative embodiment, the method includes forming at least one raised portion defining adjacent trenches in the substrate and forming a mask on the substrate, the mask having at least one opening over the upper surface of the raised portion. A buffer layer may be grown from the upper surface of the raised portion. The gallium nitride layer is then grown laterally by pendeoepitaxy over the trenches.
摘要:
A method of fabricating a gallium nitride-based semiconductor structure on a substrate includes the steps of forming a mask having at least one opening therein directly on the substrate, growing a buffer layer through the opening, and growing a layer of gallium nitride upwardly from the buffer layer and laterally across the mask. During growth of the gallium nitride from the mask, the vertical and horizontal growth rates of the gallium nitride layer are maintained at rates sufficient to prevent polycrystalline material nucleating on said mask from interrupting the lateral growth of the gallium nitride layer. In an alternative embodiment, the method includes forming at least one raised portion defining adjacent trenches in the substrate and forming a mask on the substrate, the mask having at least one opening over the upper surface of the raised portion. A buffer layer may be grown from the upper surface of the raised portion. The gallium nitride layer is then grown laterally by pendeoepitaxy over the trenches.
摘要:
An electronic device may include a packaging substrate having a packaging substrate face with a plurality of electrically conductive pads on the packaging substrate face. A first light emitting diode die may bridge first and second ones of the electrically conductive pads. More particularly, the first light emitting diode die may include first anode and cathode contacts respectively coupled to the first and second electrically conductive pads using metallic bonds. Moreover, widths of the metallic bonds between the first anode contact and the first pad and between the first cathode contact and the second pad may be at least 60 percent of a width of the first light emitting diode die. A second light emitting diode die may bridge third and fourth ones of the electrically conductive pads. The second light emitting diode die may include second anode and cathode contacts respectively coupled to the third and fourth electrically conductive pads using metallic bonds. Widths of the metallic bonds between the second anode contact and the second pad and between the second cathode contact and the third pad may be at least 60 percent of a width of the first light emitting diode die.
摘要:
An electronic device may include a packaging substrate having a packaging substrate face with a plurality of electrically conductive pads on the packaging substrate face. A first light emitting diode die may bridge first and second ones of the electrically conductive pads. More particularly, the first light emitting diode die may include first anode and cathode contacts respectively coupled to the first and second electrically conductive pads using metallic bonds. Moreover, widths of the metallic bonds between the first anode contact and the first pad and between the first cathode contact and the second pad may be at least 60 percent of a width of the first light emitting diode die. A second light emitting diode die may bridge third and fourth ones of the electrically conductive pads. The second light emitting diode die may include second anode and cathode contacts respectively coupled to the third and fourth electrically conductive pads using metallic bonds. Widths of the metallic bonds between the second anode contact and the second pad and between the second cathode contact and the third pad may be at least 60 percent of a width of the first light emitting diode die.
摘要:
The present invention is a semiconductor structure for light emitting devices that can emit in the red to ultraviolet portion of the electromagnetic spectrum. The structure includes a first n-type cladding layer of AlxInyGa1−x−yN, where 0≦x≦1 and 0≦y
摘要翻译:本发明是一种能够在电磁光谱的红色至紫外部分发射的发光器件的半导体结构。 该结构包括第一n型包覆层,其中0 <= x <= 1 和0 <= y <1和(x + y)<= 1; 第一n型包覆层,其中0 <= x <= 1和0 < = y <1和(x + y)<= 1,其中所述第二n型包层的进一步特征在于基本上不存在镁; 在多个量子阱形式的第一和第二覆层之间的有效部分,其具有多个In x N Ga 1-x N N阱层,其中0